On the convergence of Bayesian adaptive filtering

T. Sadiki, D. Slock
{"title":"On the convergence of Bayesian adaptive filtering","authors":"T. Sadiki, D. Slock","doi":"10.1109/ISSPA.2005.1581054","DOIUrl":null,"url":null,"abstract":"Standard adaptive filtering algorithms, including the popular LMS and RLS algorithms, possess only one parameter (stepsize, forgetting factor) to adjust the tracking speed in a nonstationary environment. Furthermore, existing techniques for the automatic adjustment of this parameter are not totally satisfactory and are rarely used. In this paper we pursue the concept of Bayesian Adaptive Filtering (BAF) that we introduced earlier, based on modeling the optimal adptive filter coefficients as a stationary vector process, in particular a diagonal AR(1) model. Optimal adaptive filtering with such a state model becomes Kalman filtering. The AR(1) model parameters are determined with an adaptive version of the EM algorithm, which leads to linear prediction on reconstructed optimal filter correlations, and hence a meaningful approximation/estimation compromise. In this paper we will introduce the convergence behavior of the adaptive part.","PeriodicalId":385337,"journal":{"name":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2005.1581054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Standard adaptive filtering algorithms, including the popular LMS and RLS algorithms, possess only one parameter (stepsize, forgetting factor) to adjust the tracking speed in a nonstationary environment. Furthermore, existing techniques for the automatic adjustment of this parameter are not totally satisfactory and are rarely used. In this paper we pursue the concept of Bayesian Adaptive Filtering (BAF) that we introduced earlier, based on modeling the optimal adptive filter coefficients as a stationary vector process, in particular a diagonal AR(1) model. Optimal adaptive filtering with such a state model becomes Kalman filtering. The AR(1) model parameters are determined with an adaptive version of the EM algorithm, which leads to linear prediction on reconstructed optimal filter correlations, and hence a meaningful approximation/estimation compromise. In this paper we will introduce the convergence behavior of the adaptive part.
关于贝叶斯自适应滤波的收敛性
标准的自适应滤波算法,包括流行的LMS和RLS算法,在非平稳环境中只有一个参数(步长、遗忘因子)来调整跟踪速度。此外,现有的自动调整该参数的技术并不完全令人满意,很少使用。在本文中,我们继续我们之前介绍的贝叶斯自适应滤波(BAF)的概念,基于将最优自适应滤波系数建模为平稳向量过程,特别是对角AR(1)模型。这种状态模型的最优自适应滤波就是卡尔曼滤波。AR(1)模型参数由EM算法的自适应版本确定,这导致对重建的最优滤波器相关性的线性预测,因此是有意义的近似/估计折衷。本文将介绍自适应部分的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信