Bit weaving: A non-prefix approach to compressing packet classifiers in TCAMs

C. Meiners, A. Liu, E. Torng
{"title":"Bit weaving: A non-prefix approach to compressing packet classifiers in TCAMs","authors":"C. Meiners, A. Liu, E. Torng","doi":"10.1109/ICNP.2009.5339695","DOIUrl":null,"url":null,"abstract":"Ternary Content Addressable Memories (TCAMs) have become the de facto standard in industry for fast packet classification. Unfortunately, TCAMs have limitations of small capacity, high power consumption, high heat generation, and high cost. The well-known range expansion problem exacerbates these limitations as each classifier rule typically has to be converted to multiple TCAM rules. One method for coping with these limitations is to use compression schemes to reduce the number of TCAM rules required to represent a classifier. Unfortunately, all existing compression schemes only produce prefix classifiers. Thus, they all miss the compression opportunities created by non-prefix ternary classifiers.","PeriodicalId":439867,"journal":{"name":"2009 17th IEEE International Conference on Network Protocols","volume":"306 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 17th IEEE International Conference on Network Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP.2009.5339695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

Ternary Content Addressable Memories (TCAMs) have become the de facto standard in industry for fast packet classification. Unfortunately, TCAMs have limitations of small capacity, high power consumption, high heat generation, and high cost. The well-known range expansion problem exacerbates these limitations as each classifier rule typically has to be converted to multiple TCAM rules. One method for coping with these limitations is to use compression schemes to reduce the number of TCAM rules required to represent a classifier. Unfortunately, all existing compression schemes only produce prefix classifiers. Thus, they all miss the compression opportunities created by non-prefix ternary classifiers.
位编织:在tcam中压缩包分类器的一种非前缀方法
三元内容可寻址存储器(TCAMs)已经成为行业中快速分组分类的事实上的标准。然而,tcam具有容量小、功耗高、发热量高、成本高等局限性。众所周知的范围扩展问题加剧了这些限制,因为每个分类器规则通常必须转换为多个TCAM规则。解决这些限制的一种方法是使用压缩方案来减少表示分类器所需的TCAM规则的数量。不幸的是,所有现有的压缩方案都只产生前缀分类器。因此,它们都错过了由非前缀三元分类器创建的压缩机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信