Activity classification at a higher level: what to do after the classifier does its best?

Rabih Younes, Thomas L. Martin, Mark T. Jones
{"title":"Activity classification at a higher level: what to do after the classifier does its best?","authors":"Rabih Younes, Thomas L. Martin, Mark T. Jones","doi":"10.1145/2802083.2808405","DOIUrl":null,"url":null,"abstract":"Research in activity classification has focused on the sensors, the classification techniques and the machine learning algorithms used in the classifier. In this work, we study a higher level of activity classification. We present two methods that can take the final observations of a classifier and improve them. The first method uses hidden Markov models to define a probabilistic model that can be used to improve classification accuracy. The second method is a novel method that we developed that uses probabilistic models along with matching costs in order to improve accuracy. Testing showed that both proposed methods presented a significant increase in classification accuracy rates, while also proving that they can both run in real time.","PeriodicalId":372395,"journal":{"name":"Proceedings of the 2015 ACM International Symposium on Wearable Computers","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2802083.2808405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Research in activity classification has focused on the sensors, the classification techniques and the machine learning algorithms used in the classifier. In this work, we study a higher level of activity classification. We present two methods that can take the final observations of a classifier and improve them. The first method uses hidden Markov models to define a probabilistic model that can be used to improve classification accuracy. The second method is a novel method that we developed that uses probabilistic models along with matching costs in order to improve accuracy. Testing showed that both proposed methods presented a significant increase in classification accuracy rates, while also proving that they can both run in real time.
更高层次的活动分类:分类器尽其所能后该做什么?
活动分类的研究主要集中在分类器中使用的传感器、分类技术和机器学习算法。在这项工作中,我们研究了更高层次的活动分类。我们提出了两种方法,可以采取分类器的最终观察并改进它们。第一种方法使用隐马尔可夫模型来定义一个概率模型,该模型可以用来提高分类精度。第二种方法是我们开发的一种新方法,它使用概率模型和匹配成本来提高准确性。测试表明,两种方法的分类准确率都有显著提高,同时也证明了两种方法都可以实时运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信