Multi-Spectral Data Fusion Using a Markov Random Field Model : Application to Satellite Image Classification

D. Murray, J. Zerubia
{"title":"Multi-Spectral Data Fusion Using a Markov Random Field Model : Application to Satellite Image Classification","authors":"D. Murray, J. Zerubia","doi":"10.1109/SSAP.1994.572527","DOIUrl":null,"url":null,"abstract":"I n this paper, we present a method of classifying multi-spectral satellite images. Data fusion of the multi-spectral images is achieved using a Markov random field approach. Classification is expressed as an energy minimization, problem and solved using Simulated Annealing with the Gibbs Sampler fo r label updating. The results of two digerent methods of class training, supervised and unsupervised, are shown. The proposed fusion method improved the results over those with only a single input channel.","PeriodicalId":151571,"journal":{"name":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1994.572527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

I n this paper, we present a method of classifying multi-spectral satellite images. Data fusion of the multi-spectral images is achieved using a Markov random field approach. Classification is expressed as an energy minimization, problem and solved using Simulated Annealing with the Gibbs Sampler fo r label updating. The results of two digerent methods of class training, supervised and unsupervised, are shown. The proposed fusion method improved the results over those with only a single input channel.
基于马尔可夫随机场模型的多光谱数据融合:在卫星图像分类中的应用
本文提出了一种多光谱卫星图像的分类方法。采用马尔可夫随机场方法实现多光谱图像的数据融合。将分类表示为能量最小化问题,并使用Gibbs采样器进行标签更新的模拟退火方法进行求解。给出了有监督和无监督两种不同的类训练方法的结果。所提出的融合方法比单一输入通道的融合方法效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信