A New Ensemble Learning Method Embedded with PCA-ReliefF Algorithm

Yujiao Jiang, Bin Lv, Xiaosong Li, Jing Zhou
{"title":"A New Ensemble Learning Method Embedded with PCA-ReliefF Algorithm","authors":"Yujiao Jiang, Bin Lv, Xiaosong Li, Jing Zhou","doi":"10.1109/IAI50351.2020.9262231","DOIUrl":null,"url":null,"abstract":"Improving the generalization ability of ensemble learning is very important. This paper proposes a new ensemble learning method embedded with PCA-ReliefF Algorithm. It can efficiently remove the influence of noise features, and improve the classification accuracy of ensemble learning. Experiments on UCI dataset show that the method in this paper is feasible and effective, and provides a new research approach for feature classification in pattern recognition.","PeriodicalId":137183,"journal":{"name":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI50351.2020.9262231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the generalization ability of ensemble learning is very important. This paper proposes a new ensemble learning method embedded with PCA-ReliefF Algorithm. It can efficiently remove the influence of noise features, and improve the classification accuracy of ensemble learning. Experiments on UCI dataset show that the method in this paper is feasible and effective, and provides a new research approach for feature classification in pattern recognition.
一种嵌入PCA-ReliefF算法的集成学习方法
提高集成学习的泛化能力是非常重要的。本文提出了一种嵌入PCA-ReliefF算法的集成学习方法。它能有效地去除噪声特征的影响,提高集成学习的分类精度。在UCI数据集上的实验表明,本文方法是可行和有效的,为模式识别中的特征分类提供了一种新的研究方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信