Online Motion Segmentation Based on Sparse Subspace Clustering

Jianting Wang, Zhongqian Fu
{"title":"Online Motion Segmentation Based on Sparse Subspace Clustering","authors":"Jianting Wang, Zhongqian Fu","doi":"10.12733/JICS20105521","DOIUrl":null,"url":null,"abstract":"We consider the problem of online motion segmentation for video streams. Most existing motion segmentation algorithms based on subspace clustering operate in a batch fashion. The main di‐culty of applying these algorithms to real-world applications is that their e‐ciencies can hardly meet the speed requirement when dealing with video streams. In this paper, we propose an online motion segmentation method based on Sparse Subspace Clustering (SSC). Two strategies are adopted in our approach, namely the incremental Principal Component Analysis (PCA) and a warm start from previously obtained Sparse Representation (SR), to accelerate the dimension reduction and SSC in each trail. Through extensive experiments on both synthetic and real-world data sets, we conclude that our algorithm can achieve a signiflcant acceleration under a comparable misclassiflcation rate with respect to other state-of-the-art algorithms.","PeriodicalId":213716,"journal":{"name":"The Journal of Information and Computational Science","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Information and Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12733/JICS20105521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We consider the problem of online motion segmentation for video streams. Most existing motion segmentation algorithms based on subspace clustering operate in a batch fashion. The main di‐culty of applying these algorithms to real-world applications is that their e‐ciencies can hardly meet the speed requirement when dealing with video streams. In this paper, we propose an online motion segmentation method based on Sparse Subspace Clustering (SSC). Two strategies are adopted in our approach, namely the incremental Principal Component Analysis (PCA) and a warm start from previously obtained Sparse Representation (SR), to accelerate the dimension reduction and SSC in each trail. Through extensive experiments on both synthetic and real-world data sets, we conclude that our algorithm can achieve a signiflcant acceleration under a comparable misclassiflcation rate with respect to other state-of-the-art algorithms.
基于稀疏子空间聚类的在线运动分割
我们研究视频流的在线运动分割问题。大多数现有的基于子空间聚类的运动分割算法都是以批处理的方式运行的。将这些算法应用于实际应用的主要困难是,当处理视频流时,它们的效率很难满足速度要求。本文提出了一种基于稀疏子空间聚类(SSC)的在线运动分割方法。我们的方法采用了两种策略,即增量主成分分析(PCA)和先前获得的稀疏表示(SR)的热启动,以加速每条线索的降维和SSC。通过对合成数据集和真实世界数据集的广泛实验,我们得出结论,与其他最先进的算法相比,我们的算法可以在相当的误分类率下实现显着的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信