Enhanced semi-supervised local fisher discriminant analysis for gene expression data classification

Hong Huang, Jianwei Li, Hailiang Feng, Ruxi Xiang
{"title":"Enhanced semi-supervised local fisher discriminant analysis for gene expression data classification","authors":"Hong Huang, Jianwei Li, Hailiang Feng, Ruxi Xiang","doi":"10.1109/BICTA.2010.5645127","DOIUrl":null,"url":null,"abstract":"An improved manifold learning method, called enhanced semi-supervised local fisher discriminant analysis (ESELF), for gene expression data classification is proposed. Motivated by the fact that semi-supervised and parameter-free are two desirable and promising characteristics for dimension reduction, a new difference-based optimization objective function with unlabeled samples has been designed. The proposed method preserves the global structure of unlabeled samples in addition to separating labeled samples in different classes from each other. The semi-supervised method has an analytic form of the globally optimal solution and it can be computed based on eigen decompositions. The experimental results and comparisons on synthetic data and two DNA micro array datasets demonstrate the effectiveness of the proposed method.","PeriodicalId":302619,"journal":{"name":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2010.5645127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An improved manifold learning method, called enhanced semi-supervised local fisher discriminant analysis (ESELF), for gene expression data classification is proposed. Motivated by the fact that semi-supervised and parameter-free are two desirable and promising characteristics for dimension reduction, a new difference-based optimization objective function with unlabeled samples has been designed. The proposed method preserves the global structure of unlabeled samples in addition to separating labeled samples in different classes from each other. The semi-supervised method has an analytic form of the globally optimal solution and it can be computed based on eigen decompositions. The experimental results and comparisons on synthetic data and two DNA micro array datasets demonstrate the effectiveness of the proposed method.
基于半监督局部fisher判别分析的基因表达数据分类
提出了一种改进的流形学习方法——增强半监督局部fisher判别分析(ESELF),用于基因表达数据分类。考虑到半监督和无参数是降维的两种理想和有前途的特性,设计了一种新的基于差异的无标记样本优化目标函数。该方法保留了未标记样本的整体结构,并将不同类别的标记样本相互分离。半监督方法具有全局最优解的解析形式,可基于特征分解进行计算。实验结果以及对合成数据和两个DNA微阵列数据集的比较表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信