Nonlocal matting

P. G. Lee, Ying Wu
{"title":"Nonlocal matting","authors":"P. G. Lee, Ying Wu","doi":"10.1109/CVPR.2011.5995665","DOIUrl":null,"url":null,"abstract":"This work attempts to considerably reduce the amount of user effort in the natural image matting problem. The key observation is that the nonlocal principle, introduced to denoise images, can be successfully applied to the alpha matte to obtain sparsity in matte representation, and therefore dramatically reduce the number of pixels a user needs to manually label. We show how to avoid making the user provide redundant and unnecessary input, develop a method for clustering the image pixels for the user to label, and a method to perform high-quality matte extraction. We show that this algorithm is therefore faster, easier, and higher quality than state of the art methods.","PeriodicalId":445398,"journal":{"name":"CVPR 2011","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"158","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVPR 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2011.5995665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 158

Abstract

This work attempts to considerably reduce the amount of user effort in the natural image matting problem. The key observation is that the nonlocal principle, introduced to denoise images, can be successfully applied to the alpha matte to obtain sparsity in matte representation, and therefore dramatically reduce the number of pixels a user needs to manually label. We show how to avoid making the user provide redundant and unnecessary input, develop a method for clustering the image pixels for the user to label, and a method to perform high-quality matte extraction. We show that this algorithm is therefore faster, easier, and higher quality than state of the art methods.
外地席子
这项工作试图大大减少用户在自然图像抠图问题上的工作量。关键的观察是,引入去噪图像的非局部原理可以成功地应用于alpha哑光,以获得哑光表示的稀疏性,从而大大减少用户需要手动标记的像素数量。我们展示了如何避免让用户提供冗余和不必要的输入,开发了一种用于用户标记的图像像素聚类方法,以及一种执行高质量哑光提取的方法。因此,我们表明该算法比最先进的方法更快、更容易、质量更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信