The challenges of sentiment detection in the social programmer ecosystem

Nicole Novielli, Fabio Calefato, F. Lanubile
{"title":"The challenges of sentiment detection in the social programmer ecosystem","authors":"Nicole Novielli, Fabio Calefato, F. Lanubile","doi":"10.1145/2804381.2804387","DOIUrl":null,"url":null,"abstract":"A recent research trend has emerged to study the role of affect in in the social programmer ecosystem, by applying sentiment analysis to the content available in sites such as GitHub and Stack Overflow. In this paper, we aim at assessing the suitability of a state-of-the-art sentiment analysis tool, already applied in social computing, for detecting affective expressions in Stack Overflow. We also aim at verifying the construct validity of choosing sentiment polarity and strength as an appropriate way to operationalize affective states in empirical studies on Stack Overflow. Finally, we underline the need to overcome the limitations induced by domain-dependent use of lexicon that may produce unreliable results.","PeriodicalId":212671,"journal":{"name":"Proceedings of the 7th International Workshop on Social Software Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"112","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Workshop on Social Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2804381.2804387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 112

Abstract

A recent research trend has emerged to study the role of affect in in the social programmer ecosystem, by applying sentiment analysis to the content available in sites such as GitHub and Stack Overflow. In this paper, we aim at assessing the suitability of a state-of-the-art sentiment analysis tool, already applied in social computing, for detecting affective expressions in Stack Overflow. We also aim at verifying the construct validity of choosing sentiment polarity and strength as an appropriate way to operationalize affective states in empirical studies on Stack Overflow. Finally, we underline the need to overcome the limitations induced by domain-dependent use of lexicon that may produce unreliable results.
社交程序员生态系统中情感检测的挑战
最近出现了一种研究趋势,通过对GitHub和Stack Overflow等网站上的内容进行情感分析,研究情感在社交程序员生态系统中的作用。在本文中,我们旨在评估已经应用于社会计算的最先进的情感分析工具的适用性,以检测堆栈溢出中的情感表达。在Stack Overflow的实证研究中,我们还旨在验证情感极性和强度选择作为情感状态操作的适当方式的结构有效性。最后,我们强调需要克服由词典的领域依赖使用引起的限制,这些限制可能产生不可靠的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信