Two-Phase Spectral Clustering Based on Discretization

Qiju Kang, Ying Qian, L. Sun, Hai Yu, Jianyu Wang
{"title":"Two-Phase Spectral Clustering Based on Discretization","authors":"Qiju Kang, Ying Qian, L. Sun, Hai Yu, Jianyu Wang","doi":"10.1109/IHMSC.2013.65","DOIUrl":null,"url":null,"abstract":"As spectral clustering has become increasingly popular in recent years, further research on it is very important. Due to the important role of discretization in data mining, a new clustering approach integrating discretization with density-sensitive spectral clustering namely density-sensitive spectral clustering of categorized data (DSSCCAT) is proposed. To alleviate the high computational complexity of DSSCCAT, two-phase spectral clustering (TPSC) algorithm is proposed, which involves two phases: construct the representatives of the original dataset and cluster the representatives with DSSCCAT. Experimental results on UCI datasets show the feasibility of combining discretization with density-sensitive spectral clustering. TPSC can obtain desirable clusters with high performance. Furthermore, TPSC outperforms DSSCCAT obviously in terms of computational time.","PeriodicalId":222375,"journal":{"name":"2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2013.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As spectral clustering has become increasingly popular in recent years, further research on it is very important. Due to the important role of discretization in data mining, a new clustering approach integrating discretization with density-sensitive spectral clustering namely density-sensitive spectral clustering of categorized data (DSSCCAT) is proposed. To alleviate the high computational complexity of DSSCCAT, two-phase spectral clustering (TPSC) algorithm is proposed, which involves two phases: construct the representatives of the original dataset and cluster the representatives with DSSCCAT. Experimental results on UCI datasets show the feasibility of combining discretization with density-sensitive spectral clustering. TPSC can obtain desirable clusters with high performance. Furthermore, TPSC outperforms DSSCCAT obviously in terms of computational time.
基于离散化的两相光谱聚类
随着近年来光谱聚类技术的日益普及,对其进行深入的研究具有十分重要的意义。鉴于离散化在数据挖掘中的重要作用,提出了一种将离散化与密度敏感谱聚类相结合的聚类方法——分类数据密度敏感谱聚类(DSSCCAT)。为了解决DSSCCAT算法计算复杂度高的问题,提出了两阶段谱聚类算法(TPSC),该算法包括两个阶段:首先构造原始数据集的代表,然后用DSSCCAT对代表进行聚类。在UCI数据集上的实验结果表明,离散化与密度敏感谱聚类相结合是可行的。TPSC可以获得理想的高性能集群。此外,TPSC在计算时间方面明显优于DSSCCAT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信