Emotion detection from “the SMS of the internet”

U. Nagarsekar, A. Mhapsekar, P. Kulkarni, D. Kalbande
{"title":"Emotion detection from “the SMS of the internet”","authors":"U. Nagarsekar, A. Mhapsekar, P. Kulkarni, D. Kalbande","doi":"10.1109/RAICS.2013.6745494","DOIUrl":null,"url":null,"abstract":"Due to the sudden eruption of activity in the social networking domain, analysts, social media as well as general public are drawn to Sentiment Analysis domain to gain invaluable information. In this paper, we go beyond basic sentiment classification (positive, negative and neutral) and target deeper emotion classification of Twitter data. We have focused on emotion identification into Ekman's six basic emotions i.e. JOY, SURPRISE, ANGER, DISGUST, FEAR and SADNESS. We have employed two diverse machine learning algorithms with three varied datasets and analyzed their outcomes. We show how equal distribution of emotions in training tweets results in better learning accuracies and hence better performance in the classification task.","PeriodicalId":184155,"journal":{"name":"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAICS.2013.6745494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Due to the sudden eruption of activity in the social networking domain, analysts, social media as well as general public are drawn to Sentiment Analysis domain to gain invaluable information. In this paper, we go beyond basic sentiment classification (positive, negative and neutral) and target deeper emotion classification of Twitter data. We have focused on emotion identification into Ekman's six basic emotions i.e. JOY, SURPRISE, ANGER, DISGUST, FEAR and SADNESS. We have employed two diverse machine learning algorithms with three varied datasets and analyzed their outcomes. We show how equal distribution of emotions in training tweets results in better learning accuracies and hence better performance in the classification task.
从“互联网短信”看情感检测
由于社交网络领域的活动突然爆发,分析师,社交媒体以及公众都被吸引到情感分析领域以获得宝贵的信息。在本文中,我们超越了基本的情感分类(积极,消极和中性),并针对Twitter数据进行更深层次的情感分类。我们将情绪识别分为艾克曼的六种基本情绪,即喜悦、惊讶、愤怒、厌恶、恐惧和悲伤。我们使用了两种不同的机器学习算法和三个不同的数据集,并分析了它们的结果。我们展示了训练推文中情绪的均匀分布如何导致更好的学习准确性,从而在分类任务中获得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信