Paul O'Mahoney, Craig McDougall, P. Glynne-Jones, Michael P. MacDonald
{"title":"Acoustic trapping in bubble-bounded micro-cavities","authors":"Paul O'Mahoney, Craig McDougall, P. Glynne-Jones, Michael P. MacDonald","doi":"10.1515/optof-2016-0003","DOIUrl":null,"url":null,"abstract":"Abstract We present a method for controllably producing longitudinal acoustic trapping sites inside microfluidic channels. Air bubbles are injected into a micro-capillary to create bubble-bounded ‘micro-cavities’. A cavity mode is formed that shows controlled longitudinal acoustic trapping between the two air/water interfaces along with the levitation to the centre of the channel that one would expect from a lower order lateral mode. 7 μm and 10 μm microspheres are trapped at the discrete acoustic trapping sites in these micro-cavities.We show this for several lengths of micro-cavity.","PeriodicalId":144806,"journal":{"name":"Optofluidics, Microfluidics and Nanofluidics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optofluidics, Microfluidics and Nanofluidics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/optof-2016-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We present a method for controllably producing longitudinal acoustic trapping sites inside microfluidic channels. Air bubbles are injected into a micro-capillary to create bubble-bounded ‘micro-cavities’. A cavity mode is formed that shows controlled longitudinal acoustic trapping between the two air/water interfaces along with the levitation to the centre of the channel that one would expect from a lower order lateral mode. 7 μm and 10 μm microspheres are trapped at the discrete acoustic trapping sites in these micro-cavities.We show this for several lengths of micro-cavity.