Semantic Attribute Guided Image Aesthetics Assessment

Jiachen Duan, Pengfei Chen, Leida Li, Jinjian Wu, Guangming Shi
{"title":"Semantic Attribute Guided Image Aesthetics Assessment","authors":"Jiachen Duan, Pengfei Chen, Leida Li, Jinjian Wu, Guangming Shi","doi":"10.1109/VCIP56404.2022.10008896","DOIUrl":null,"url":null,"abstract":"Image aesthetics assessment (IAA) measures the perceived beauty of images using a computational approach. People usually assess the aesthetics of an image according to semantic attributes, e.g., lighting, color, object emphasis, etc. However, the state-of-the-art IAA approaches usually follow the data-driven framework without considering the rich attributes contained in images. With this motivation, this paper presents a new semantic attribute guided IAA model, where the attention maps of semantic attributes are employed to enhance the representation ability of general aesthetic features for more effective aesthetics assessment. Specifically, we first design an attribute attention generation network to obtain the attention maps for different semantic attributes, which are utilized to weight the general aesthetic features, producing the semantic attribute-enhanced feature representations. Then, the Graph Convolutional Network (GCN) is employed to further investigate the inherent relationship among the enhanced aesthetic features, producing the final image aesthetics prediction. Extensive experiments and comparisons on three public IAA databases demonstrate the effectiveness of the proposed method.","PeriodicalId":269379,"journal":{"name":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP56404.2022.10008896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Image aesthetics assessment (IAA) measures the perceived beauty of images using a computational approach. People usually assess the aesthetics of an image according to semantic attributes, e.g., lighting, color, object emphasis, etc. However, the state-of-the-art IAA approaches usually follow the data-driven framework without considering the rich attributes contained in images. With this motivation, this paper presents a new semantic attribute guided IAA model, where the attention maps of semantic attributes are employed to enhance the representation ability of general aesthetic features for more effective aesthetics assessment. Specifically, we first design an attribute attention generation network to obtain the attention maps for different semantic attributes, which are utilized to weight the general aesthetic features, producing the semantic attribute-enhanced feature representations. Then, the Graph Convolutional Network (GCN) is employed to further investigate the inherent relationship among the enhanced aesthetic features, producing the final image aesthetics prediction. Extensive experiments and comparisons on three public IAA databases demonstrate the effectiveness of the proposed method.
语义属性引导的图像美学评价
图像美学评估(IAA)使用计算方法测量图像的感知美。人们通常根据语义属性来评价图像的美感,例如灯光、颜色、物体的重点等。然而,最先进的IAA方法通常遵循数据驱动的框架,而不考虑图像中包含的丰富属性。基于这一动机,本文提出了一种新的语义属性引导的IAA模型,该模型利用语义属性的注意图来增强一般审美特征的表征能力,从而更有效地进行审美评价。具体而言,我们首先设计了一个属性注意生成网络,获取不同语义属性的注意图,利用这些注意图对一般审美特征进行加权,生成语义属性增强的特征表示。然后,使用图卷积网络(GCN)进一步研究增强的美学特征之间的内在关系,从而产生最终的图像美学预测。在三个公共IAA数据库上进行了大量的实验和比较,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信