V. Sabatini, L. Bigarelli, M. di Benedetto, A. Lidozzi, L. Solero, G. Brown
{"title":"FPGA-based Model Predictive Control for High Frequency Variable Speed Generating Units","authors":"V. Sabatini, L. Bigarelli, M. di Benedetto, A. Lidozzi, L. Solero, G. Brown","doi":"10.1109/SPEEDAM.2018.8445389","DOIUrl":null,"url":null,"abstract":"This paper deals with the design and implementation of high performance Model Predictive Control (MPC) strategy for stabilizing the output DC-link of an AC-DC converter in generating applications. The system is composed of a permanent magnets synchronous machine which is directly driven by a prime mover (i.e. internal combustion engine, gas turbine, etc..) and an AC-DC power converter. In such application, the control structure must be able to regulate the DC-link voltage as well as the dq-axes currents. Complete design of the Model Predictive Control strategy is described and tested, with reference to the internal reference generation and FPGA implementation. Being the system characterized by non-linear behaviors, the MPC approach is considered particularly suitable to overcome that issue.","PeriodicalId":117883,"journal":{"name":"2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEEDAM.2018.8445389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper deals with the design and implementation of high performance Model Predictive Control (MPC) strategy for stabilizing the output DC-link of an AC-DC converter in generating applications. The system is composed of a permanent magnets synchronous machine which is directly driven by a prime mover (i.e. internal combustion engine, gas turbine, etc..) and an AC-DC power converter. In such application, the control structure must be able to regulate the DC-link voltage as well as the dq-axes currents. Complete design of the Model Predictive Control strategy is described and tested, with reference to the internal reference generation and FPGA implementation. Being the system characterized by non-linear behaviors, the MPC approach is considered particularly suitable to overcome that issue.