Short Term Forecasting Method: Covid 19 and Capital Market in Indonesia

Novianda Besti
{"title":"Short Term Forecasting Method: Covid 19 and Capital Market in Indonesia","authors":"Novianda Besti","doi":"10.25077/mssb.3.1.35-48.2022","DOIUrl":null,"url":null,"abstract":"This study aimed to predict the short-term confirmed Covid 19 and Jakarta Composite Index (JCI) cases in Indonesia. The prediction uses ARIMA and SutteARIMA methods, and the data processed with R software. Researcher using time series data from April 2nd, 2020 (the date of covid 19 detected in Indonesia) to September 30th, 2020. We are fitted the data with the data from October 1st to October 10th, 2020. Based on the fitted data, we could forecast the cases from October 11th to October 31st, 2020. We applied the Mean Absolute Percentage Error (MAPE) to predict accuracy measures to evaluate forecasting methods. Based on forecasting with ARIMA and SutteARIMA methods, the SutteARIMA method is more suitable than ARIMA to calculate the daily forecasts of negative Covid 19 in Indonesia with MAPE value of 0.156 (smaller than 0.21 compared to MAPE value of ARIMA). At the same time, the ARIMA method is more suitable than SutteARIMA to calculate the daily forecasts of positive Covid 19 and JCI in Indonesia. The MAPE value of 0.06 (smaller than 0.104 compared to MAPE value of SutteARIMA for positive Covid 19) and MAPE value of 0.012 (smaller than 0.021 compared to MAPE value of SutteARIMA for JCI Indonesia).","PeriodicalId":387028,"journal":{"name":"Jurnal Manajemen Stratejik dan Simulasi Bisnis","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Manajemen Stratejik dan Simulasi Bisnis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/mssb.3.1.35-48.2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to predict the short-term confirmed Covid 19 and Jakarta Composite Index (JCI) cases in Indonesia. The prediction uses ARIMA and SutteARIMA methods, and the data processed with R software. Researcher using time series data from April 2nd, 2020 (the date of covid 19 detected in Indonesia) to September 30th, 2020. We are fitted the data with the data from October 1st to October 10th, 2020. Based on the fitted data, we could forecast the cases from October 11th to October 31st, 2020. We applied the Mean Absolute Percentage Error (MAPE) to predict accuracy measures to evaluate forecasting methods. Based on forecasting with ARIMA and SutteARIMA methods, the SutteARIMA method is more suitable than ARIMA to calculate the daily forecasts of negative Covid 19 in Indonesia with MAPE value of 0.156 (smaller than 0.21 compared to MAPE value of ARIMA). At the same time, the ARIMA method is more suitable than SutteARIMA to calculate the daily forecasts of positive Covid 19 and JCI in Indonesia. The MAPE value of 0.06 (smaller than 0.104 compared to MAPE value of SutteARIMA for positive Covid 19) and MAPE value of 0.012 (smaller than 0.021 compared to MAPE value of SutteARIMA for JCI Indonesia).
短期预测方法:新冠肺炎与印尼资本市场
本研究旨在预测印度尼西亚短期确诊病例和雅加达综合指数(JCI)病例。预测采用ARIMA和SutteARIMA方法,数据采用R软件处理。研究人员使用了从2020年4月2日(印度尼西亚发现covid - 19之日)到2020年9月30日的时间序列数据。我们将数据拟合为2020年10月1日至10月10日的数据。根据拟合数据,我们可以预测2020年10月11日至10月31日的病例。我们应用平均绝对百分比误差(MAPE)来预测准确度,以评估预测方法。在ARIMA和SutteARIMA方法预测的基础上,SutteARIMA方法比ARIMA方法更适合计算印度尼西亚的每日阴性Covid - 19预测,MAPE值为0.156(与ARIMA的MAPE值相比小于0.21)。同时,ARIMA方法比SutteARIMA方法更适合计算印尼新冠病毒阳性和JCI的日预报。MAPE值为0.06(与Covid - 19阳性的SutteARIMA MAPE值相比小于0.104),MAPE值为0.012(与印度尼西亚JCI的SutteARIMA MAPE值相比小于0.021)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信