{"title":"A mean-variance control framework for platoon control problems: Weak convergence results and applications on reduction of complexity","authors":"Zhixin Yang, G. Yin, L. Wang, Hongwei Zhang","doi":"10.4310/CIS.2015.V15.N1.A5","DOIUrl":null,"url":null,"abstract":"This paper introduces a new approach of treating platoon systems using mean-variance control formulation. The underlying system is a controlled switching diffusion in which the random switching process is a continuous-time Markov chain. This switching process is used to represent random environment and other random factors that cannot be given by stochastic differential equations driven by a Brownian motion. The state space of the Markov chain is large in our setup, which renders practically infeasible a straightforward implementation of the mean-variance control strategy obtained in the literature. By partitioning the states of the Markov chain into sub-groups (or clusters) and then aggregating the states of each cluster as a super state, we are able to obtain a limit system of much reduced complexity. The justification of the limit system is rigorously supported by establishing certain weak convergence results.","PeriodicalId":185710,"journal":{"name":"Commun. Inf. Syst.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commun. Inf. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/CIS.2015.V15.N1.A5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper introduces a new approach of treating platoon systems using mean-variance control formulation. The underlying system is a controlled switching diffusion in which the random switching process is a continuous-time Markov chain. This switching process is used to represent random environment and other random factors that cannot be given by stochastic differential equations driven by a Brownian motion. The state space of the Markov chain is large in our setup, which renders practically infeasible a straightforward implementation of the mean-variance control strategy obtained in the literature. By partitioning the states of the Markov chain into sub-groups (or clusters) and then aggregating the states of each cluster as a super state, we are able to obtain a limit system of much reduced complexity. The justification of the limit system is rigorously supported by establishing certain weak convergence results.