A maneuver-prediction method based on dynamic bayesian network in highway scenarios

Junxiang Li, Xiaohui Li, Bohan Jiang, Q. Zhu
{"title":"A maneuver-prediction method based on dynamic bayesian network in highway scenarios","authors":"Junxiang Li, Xiaohui Li, Bohan Jiang, Q. Zhu","doi":"10.1109/CCDC.2018.8407710","DOIUrl":null,"url":null,"abstract":"The accurate maneuver prediction for dynamic vehicles can enhance driving safety in complex environments. This paper presents a maneuver prediction method for dynamic vehicles in highway scenarios. The method effectively combines multi-frame vehicle states, road structures and interactions among vehicles. With a novel extraction algorithm of environment feature, the method infers the probability of each driving maneuver by using a Dynamic Bayesian Net­work. The experimental results demonstrate that our method can predict lane-change maneuvers at least 2 seconds before they occur in real environments with an accuracy of 84.9%.","PeriodicalId":409960,"journal":{"name":"2018 Chinese Control And Decision Conference (CCDC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Chinese Control And Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2018.8407710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The accurate maneuver prediction for dynamic vehicles can enhance driving safety in complex environments. This paper presents a maneuver prediction method for dynamic vehicles in highway scenarios. The method effectively combines multi-frame vehicle states, road structures and interactions among vehicles. With a novel extraction algorithm of environment feature, the method infers the probability of each driving maneuver by using a Dynamic Bayesian Net­work. The experimental results demonstrate that our method can predict lane-change maneuvers at least 2 seconds before they occur in real environments with an accuracy of 84.9%.
基于动态贝叶斯网络的公路机动预测方法
对动态车辆进行准确的机动预测,可以提高复杂环境下的行车安全性。提出了一种公路场景下动态车辆机动预测方法。该方法有效地结合了多帧车辆状态、道路结构和车辆间的相互作用。该方法采用一种新颖的环境特征提取算法,利用动态贝叶斯网络推断出每个驾驶动作的概率。实验结果表明,该方法可以在实际环境中至少提前2秒预测变道机动,准确率为84.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信