An address generator, for an N-dimensional pseudo-Hilbert scan in a hyper-rectangular, parallelepiped region

Y. Bandoh, S. Kamata
{"title":"An address generator, for an N-dimensional pseudo-Hilbert scan in a hyper-rectangular, parallelepiped region","authors":"Y. Bandoh, S. Kamata","doi":"10.1109/ICIP.2000.901064","DOIUrl":null,"url":null,"abstract":"The Hilbert curve is a one-to-one mapping between N-dimensional (N-D) space and 1-D space. The Hilbert curve has been applied to image processing as a scanning technique (Hilbert scan). Applications to multi-dimensional image processing are also studied. In this application. We use the N-D Hilbert scan which maps N-D data to 1-D data along the N-D Hilbert curve. However, the N-D Hilbert scan is the application limited to data in a hyper-cube region. In this paper, we present a novel algorithm for generating N-D pseudo-Hilbert curves in a hyper-rectangular parallelepiped region. Our algorithm is suitable for real-time processing and is easy to implement in hardware, since it is a simple and non-recursive computation using look-up tables.","PeriodicalId":193198,"journal":{"name":"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2000.901064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

The Hilbert curve is a one-to-one mapping between N-dimensional (N-D) space and 1-D space. The Hilbert curve has been applied to image processing as a scanning technique (Hilbert scan). Applications to multi-dimensional image processing are also studied. In this application. We use the N-D Hilbert scan which maps N-D data to 1-D data along the N-D Hilbert curve. However, the N-D Hilbert scan is the application limited to data in a hyper-cube region. In this paper, we present a novel algorithm for generating N-D pseudo-Hilbert curves in a hyper-rectangular parallelepiped region. Our algorithm is suitable for real-time processing and is easy to implement in hardware, since it is a simple and non-recursive computation using look-up tables.
一个地址生成器,用于超矩形平行六面体区域的n维伪希尔伯特扫描
希尔伯特曲线是n维(N-D)空间和一维空间之间的一对一映射。希尔伯特曲线作为一种扫描技术(希尔伯特扫描)已被应用于图像处理。还研究了在多维图像处理中的应用。在这个应用程序中。我们使用N-D希尔伯特扫描,它沿着N-D希尔伯特曲线将N-D数据映射到1-D数据。然而,N-D希尔伯特扫描的应用仅限于超立方体区域中的数据。本文提出了一种在超矩形平行六面体区域上生成N-D伪希尔伯特曲线的新算法。我们的算法适合于实时处理,并且易于在硬件中实现,因为它是一个使用查找表的简单且非递归计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信