Writing type, script and language identification in heterogeneous documents

Anis Mezghani, Fouad Slimane, M. Kherallah
{"title":"Writing type, script and language identification in heterogeneous documents","authors":"Anis Mezghani, Fouad Slimane, M. Kherallah","doi":"10.1504/IJISTA.2017.10006001","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a writing type, script and language text classification method to automatically determine the identity of texts segmented from heterogeneous document images. These documents are written in Arabic, French and English languages with mixed machine-printed and handwritten text. To handle such a problem, we treat each text-line/word image with a fixed-length sliding window. Each window is represented with 23 simple and efficient features to achieve the writing type and the script identification goal using Gaussian mixture models (GMM). The proposed approach for language identification is based on a bi-gram analysis of an optical character recognition (OCR) output. Experiments have been conducted with handwritten and machine-printed text-blocks, text-lines and words extracted from the Maurdor database. The results reveal the feasibility of our proposed method in writing type, script and language identification.","PeriodicalId":420808,"journal":{"name":"Int. J. Intell. Syst. Technol. Appl.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Intell. Syst. Technol. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJISTA.2017.10006001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a writing type, script and language text classification method to automatically determine the identity of texts segmented from heterogeneous document images. These documents are written in Arabic, French and English languages with mixed machine-printed and handwritten text. To handle such a problem, we treat each text-line/word image with a fixed-length sliding window. Each window is represented with 23 simple and efficient features to achieve the writing type and the script identification goal using Gaussian mixture models (GMM). The proposed approach for language identification is based on a bi-gram analysis of an optical character recognition (OCR) output. Experiments have been conducted with handwritten and machine-printed text-blocks, text-lines and words extracted from the Maurdor database. The results reveal the feasibility of our proposed method in writing type, script and language identification.
异质文件的书写类型、脚本和语言识别
在本文中,我们提出了一种文字类型、文字和语言文本分类方法来自动确定从异构文档图像中分割出来的文本的身份。这些文件以阿拉伯文、法文和英文写成,并混合了机器印刷和手写文本。为了处理这样的问题,我们用固定长度的滑动窗口来处理每个文本行/单词图像。每个窗口用23个简单高效的特征表示,利用高斯混合模型(GMM)实现了书写类型和脚本识别的目标。提出的语言识别方法是基于光学字符识别(OCR)输出的双图分析。实验用从Maurdor数据库中提取的手写和机器打印文本块、文本行和单词进行。结果表明,本文提出的方法在文字类型、文字和语言识别方面是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信