Exploring Feature Normalization and Temporal Information for Machine Learning Based Insider Threat Detection

Pedro Ferreira, Duc C. Le, N. Zincir-Heywood
{"title":"Exploring Feature Normalization and Temporal Information for Machine Learning Based Insider Threat Detection","authors":"Pedro Ferreira, Duc C. Le, N. Zincir-Heywood","doi":"10.23919/CNSM46954.2019.9012708","DOIUrl":null,"url":null,"abstract":"Insider threat is one of the most damaging cyber security attacks to companies and organizations. In this paper, we explore different techniques to leverage spatial and temporal characteristics of user behaviours for insider threat detection. In particular, feature normalization (scaling) techniques and a scheme for representing explicit temporal information are explored to improve the performance of the machine learning based insider threat detection. The results show that these data characteristics have different effects on different classifiers, where Standard Scaler with Random Forest classifier produces the best performance.","PeriodicalId":273818,"journal":{"name":"2019 15th International Conference on Network and Service Management (CNSM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM46954.2019.9012708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Insider threat is one of the most damaging cyber security attacks to companies and organizations. In this paper, we explore different techniques to leverage spatial and temporal characteristics of user behaviours for insider threat detection. In particular, feature normalization (scaling) techniques and a scheme for representing explicit temporal information are explored to improve the performance of the machine learning based insider threat detection. The results show that these data characteristics have different effects on different classifiers, where Standard Scaler with Random Forest classifier produces the best performance.
探索基于机器学习的内部威胁检测的特征归一化和时间信息
内部威胁是对公司和组织最具破坏性的网络安全攻击之一。在本文中,我们探索了利用用户行为的空间和时间特征进行内部威胁检测的不同技术。特别是,研究了特征归一化(缩放)技术和表示显式时间信息的方案,以提高基于机器学习的内部威胁检测的性能。结果表明,这些数据特征对不同的分类器有不同的影响,其中标准尺度器与随机森林分类器的性能最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信