Scaling MapReduce Vertically and Horizontally

I. El-Helw, Rutger F. H. Hofman, H. Bal
{"title":"Scaling MapReduce Vertically and Horizontally","authors":"I. El-Helw, Rutger F. H. Hofman, H. Bal","doi":"10.1109/SC.2014.48","DOIUrl":null,"url":null,"abstract":"Glass wing is a MapReduce framework that uses OpenCL to exploit multi-core CPUs and accelerators. However, compute device capabilities may vary significantly and require targeted optimization. Similarly, the availability of resources such as memory, storage and interconnects can severely impact overall job performance. In this paper, we present and analyze how MapReduce applications can improve their horizontal and vertical scalability by using a well controlled mixture of coarse- and fine-grained parallelism. Specifically, we discuss the Glass wing pipeline and its ability to overlap computation, communication, memory transfers and disk access. Additionally, we show how Glass wing can adapt to the distinct capabilities of a variety of compute devices by employing fine-grained parallelism. We experimentally evaluated the performance of five MapReduce applications and show that Glass wing outperforms Hadoop on a 64-node multi-core CPU cluster by factors between 1.2 and 4, and factors from 20 to 30 on a 23-node GPU cluster. Similarly, we show that Glass wing is at least 1.5 times faster than GPMR on the GPU cluster.","PeriodicalId":275261,"journal":{"name":"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2014.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Glass wing is a MapReduce framework that uses OpenCL to exploit multi-core CPUs and accelerators. However, compute device capabilities may vary significantly and require targeted optimization. Similarly, the availability of resources such as memory, storage and interconnects can severely impact overall job performance. In this paper, we present and analyze how MapReduce applications can improve their horizontal and vertical scalability by using a well controlled mixture of coarse- and fine-grained parallelism. Specifically, we discuss the Glass wing pipeline and its ability to overlap computation, communication, memory transfers and disk access. Additionally, we show how Glass wing can adapt to the distinct capabilities of a variety of compute devices by employing fine-grained parallelism. We experimentally evaluated the performance of five MapReduce applications and show that Glass wing outperforms Hadoop on a 64-node multi-core CPU cluster by factors between 1.2 and 4, and factors from 20 to 30 on a 23-node GPU cluster. Similarly, we show that Glass wing is at least 1.5 times faster than GPMR on the GPU cluster.
垂直和水平缩放MapReduce
Glass wing是一个MapReduce框架,它使用OpenCL来开发多核cpu和加速器。但是,计算设备的功能可能会有很大差异,需要进行有针对性的优化。类似地,内存、存储和互连等资源的可用性也会严重影响整体作业性能。在本文中,我们展示并分析了MapReduce应用程序如何通过使用粗粒度和细粒度并行性的良好控制混合来提高其水平和垂直可伸缩性。具体来说,我们讨论了Glass翼管道及其重叠计算、通信、内存传输和磁盘访问的能力。此外,我们还展示了Glass wing如何通过采用细粒度并行性来适应各种计算设备的不同功能。我们通过实验评估了5个MapReduce应用程序的性能,并表明Glass wing在64节点多核CPU集群上的性能优于Hadoop的倍数在1.2到4之间,在23节点GPU集群上的性能优于Hadoop的倍数在20到30之间。同样,我们表明Glass wing在GPU集群上比GPMR快至少1.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信