Empirical Likelihood Estimation for a Class of Stable Processes

Hiroaki Ogata
{"title":"Empirical Likelihood Estimation for a Class of Stable Processes","authors":"Hiroaki Ogata","doi":"10.14490/JJSS.40.207","DOIUrl":null,"url":null,"abstract":"We investigate the empirical likelihood estimation for a parameter of linear processes whose innovations have i.i.d. symmetric α-stable distributions. To construct the estimating function for the empirical likelihood method, we make use of the empirical and theoretical characteristic functions. The asymptotic normality of the maximum empirical likelihood estimator is derived. The behavior of the asymptotic variance with respect to infinitesimal perturbations of the dependence effect is studied and we find that it is dependence robust when α > 1. Numerical studies are also given.","PeriodicalId":326924,"journal":{"name":"Journal of the Japan Statistical Society. Japanese issue","volume":"083 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Statistical Society. Japanese issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14490/JJSS.40.207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We investigate the empirical likelihood estimation for a parameter of linear processes whose innovations have i.i.d. symmetric α-stable distributions. To construct the estimating function for the empirical likelihood method, we make use of the empirical and theoretical characteristic functions. The asymptotic normality of the maximum empirical likelihood estimator is derived. The behavior of the asymptotic variance with respect to infinitesimal perturbations of the dependence effect is studied and we find that it is dependence robust when α > 1. Numerical studies are also given.
一类稳定过程的经验似然估计
研究了一类创新具有对称α-稳定分布的线性过程参数的经验似然估计。为了构造经验似然法的估计函数,我们利用了经验特征函数和理论特征函数。导出了极大经验似然估计量的渐近正态性。研究了渐近方差对依赖效应的无穷小扰动的行为,发现当α > 1时,渐近方差是相关鲁棒的。并给出了数值研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信