HARNESSING DEEP LEARNING FOR WILDFIRE RISKS PREDICTION: A NOVEL APPROACH

Hoang Anh Duc
{"title":"HARNESSING DEEP LEARNING FOR WILDFIRE RISKS PREDICTION: A NOVEL APPROACH","authors":"Hoang Anh Duc","doi":"10.26483/ijarcs.v14i3.6983","DOIUrl":null,"url":null,"abstract":"This article presents a pioneering approach for predicting wildfires risks using deep learning techniques. By combining convolutional neural networks (CNNs), recurrent neural networks (RNNs) and Adaptive Moment Estimation (ADAM), our framework analyses geospatial and environmental data to capture the intricate dynamics of disasters. Our model integrates satellite imagery, climate data, socioeconomic factors, and historical records to accurately assess risks. Leveraging transfer learning, we optimize training efficiency with pre-trained models. Extensive experiments demonstrate the superior performance of our deep learning framework compared to traditional methods. With its ability to enable proactive planning and decision-making, our approach strengthens disaster preparedness and response strategies. This research represents a significant advancement in utilizing deep learning for predicting wildfires risks, paving the way for further innovations in this vital field.","PeriodicalId":287911,"journal":{"name":"International Journal of Advanced Research in Computer Science","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Research in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26483/ijarcs.v14i3.6983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a pioneering approach for predicting wildfires risks using deep learning techniques. By combining convolutional neural networks (CNNs), recurrent neural networks (RNNs) and Adaptive Moment Estimation (ADAM), our framework analyses geospatial and environmental data to capture the intricate dynamics of disasters. Our model integrates satellite imagery, climate data, socioeconomic factors, and historical records to accurately assess risks. Leveraging transfer learning, we optimize training efficiency with pre-trained models. Extensive experiments demonstrate the superior performance of our deep learning framework compared to traditional methods. With its ability to enable proactive planning and decision-making, our approach strengthens disaster preparedness and response strategies. This research represents a significant advancement in utilizing deep learning for predicting wildfires risks, paving the way for further innovations in this vital field.
利用深度学习进行野火风险预测:一种新方法
本文介绍了一种使用深度学习技术预测野火风险的开创性方法。通过结合卷积神经网络(cnn)、循环神经网络(rnn)和自适应矩估计(ADAM),我们的框架分析了地理空间和环境数据,以捕捉灾害的复杂动态。我们的模型整合了卫星图像、气候数据、社会经济因素和历史记录,以准确评估风险。利用迁移学习,我们利用预训练模型优化训练效率。大量的实验表明,与传统方法相比,我们的深度学习框架具有优越的性能。我们的方法能够促进积极的规划和决策,从而加强备灾和应变策略。这项研究在利用深度学习预测野火风险方面取得了重大进展,为这一重要领域的进一步创新铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信