Step Response of Commensurate Fractional Lowpass Pseudo-Biquad: Critical Damping

D. Biolek, V. Biolková, Z. Kolka
{"title":"Step Response of Commensurate Fractional Lowpass Pseudo-Biquad: Critical Damping","authors":"D. Biolek, V. Biolková, Z. Kolka","doi":"10.1109/ITC-CSCC58803.2023.10212692","DOIUrl":null,"url":null,"abstract":"In the paper, a comparison is made between the step responses of the classical integer-order biquad with the transfer function <tex>$((s/\\omega_{0})^{2}+(s/\\omega_{0})/Q+1)^{-1}$</tex>, where <tex>$\\omega_{0}$</tex> and <tex>$Q$</tex> are the characteristic frequency and quality factor, and the commensurate fractional pseudo-biquad with the transfer function <tex>$((s/\\omega_{0})^{2\\alpha}+(s/\\omega_{0})^{\\alpha}/Q+1)^{-1},\\ 0 < \\alpha\\leq 1$</tex>. While the classical biquad experiences the fastest response for critical damping when <tex>$Q=0.5$</tex>, a similar response can be observed for the fractional circuit, but for larger values of <tex>$Q$</tex> depending on the <tex>$\\alpha$</tex> parameter. For <tex>$\\alpha < 1$</tex>, the response then settles faster than for the classical filter. Coupling conditions between the parameters <tex>$\\alpha$</tex> and <tex>$Q$</tex> are found that lead to the so-called pseudo-critical damping and critical underdamping.","PeriodicalId":220939,"journal":{"name":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC-CSCC58803.2023.10212692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the paper, a comparison is made between the step responses of the classical integer-order biquad with the transfer function $((s/\omega_{0})^{2}+(s/\omega_{0})/Q+1)^{-1}$, where $\omega_{0}$ and $Q$ are the characteristic frequency and quality factor, and the commensurate fractional pseudo-biquad with the transfer function $((s/\omega_{0})^{2\alpha}+(s/\omega_{0})^{\alpha}/Q+1)^{-1},\ 0 < \alpha\leq 1$. While the classical biquad experiences the fastest response for critical damping when $Q=0.5$, a similar response can be observed for the fractional circuit, but for larger values of $Q$ depending on the $\alpha$ parameter. For $\alpha < 1$, the response then settles faster than for the classical filter. Coupling conditions between the parameters $\alpha$ and $Q$ are found that lead to the so-called pseudo-critical damping and critical underdamping.
相称分数阶低通伪双极的阶跃响应:临界阻尼
本文比较了具有传递函数$((s/\omega_{0})^{2}+(s/\omega_{0})/Q+1)^{-1}$(其中$\omega_{0}$和$Q$为特征频率和品质因子)的经典整阶双曲面与具有传递函数$((s/\omega_{0})^{2\alpha}+(s/\omega_{0})^{\alpha}/Q+1)^{-1},\ 0 < \alpha\leq 1$的相应分数阶伪双曲面的阶跃响应。当$Q=0.5$为临界阻尼时,经典双极电路的响应速度最快,而分数电路的响应也类似,但取决于$\alpha$参数的$Q$值更大。对于$\alpha < 1$,响应的稳定速度比经典过滤器更快。发现参数$\alpha$和$Q$之间的耦合条件导致所谓的伪临界阻尼和临界欠阻尼。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信