Asymptotic MIMO artificial-noise secrecy rates with eigenmode partitioning

A. D. Harper, R. Baxley
{"title":"Asymptotic MIMO artificial-noise secrecy rates with eigenmode partitioning","authors":"A. D. Harper, R. Baxley","doi":"10.1109/WIFS.2014.7084307","DOIUrl":null,"url":null,"abstract":"In a multiple-input multiple-output (MIMO) wiretap channel system, it has been shown that artificial noise can be transmitted in the null space of the main channel to guarantee the secrecy at the intended receiver. Previous formulas for MIMO asymptotic capacity assume that all channel eigenmodes will be utilized. However, optimizing over possible antenna configurations requires partitioning the available eigenmodes. With only some eigenmodes used for signal transmission, finding an exact closed-form asymptotic solution is, in general, intractable. We present a large-scale MIMO approximation with eigenmode partitioning, accurate for realistic numbers of antennas, and with greatly reduced computational complexity.","PeriodicalId":220523,"journal":{"name":"2014 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS.2014.7084307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a multiple-input multiple-output (MIMO) wiretap channel system, it has been shown that artificial noise can be transmitted in the null space of the main channel to guarantee the secrecy at the intended receiver. Previous formulas for MIMO asymptotic capacity assume that all channel eigenmodes will be utilized. However, optimizing over possible antenna configurations requires partitioning the available eigenmodes. With only some eigenmodes used for signal transmission, finding an exact closed-form asymptotic solution is, in general, intractable. We present a large-scale MIMO approximation with eigenmode partitioning, accurate for realistic numbers of antennas, and with greatly reduced computational complexity.
具有特征模划分的渐近MIMO人工噪声保密率
在多输入多输出(MIMO)窃听信道系统中,可以在主信道的零空间中传输人工噪声以保证接收端的保密性。先前的MIMO渐近容量公式假设将利用所有信道特征模。然而,优化可能的天线配置需要划分可用的特征模式。通常情况下,当信号传输仅使用某些特征模态时,很难找到精确的闭型渐近解。我们提出了一个具有特征模式划分的大规模MIMO近似,对实际天线数量准确,并且大大降低了计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信