Mobile Robot Localization using GPS, IMU and Visual Odometry

Guo-Sheng Cai, H. Lin, Shih-Fen Kao
{"title":"Mobile Robot Localization using GPS, IMU and Visual Odometry","authors":"Guo-Sheng Cai, H. Lin, Shih-Fen Kao","doi":"10.1109/CACS47674.2019.9024731","DOIUrl":null,"url":null,"abstract":"In this work we present the localization and navigation for a mobile robot in the outdoor environment. It is based on fusing the data from IMU, differential GPS and visual odometry using the extended Kalman filter framework. First, the IMU provides the heading angle information from the magnetometer and angular velocity, and GPS provides the absolute position information of the mobile robot. The image-based visual odometry is adopted to derive the moving distance and additional localization information. Finally, the mobile robot position is further refined using the extended Kalman filter. The experiments are carried out in the outdoor environment. We compare the results with the original GPS raw data, and the performance of the presented method is evaluated.","PeriodicalId":247039,"journal":{"name":"2019 International Automatic Control Conference (CACS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Automatic Control Conference (CACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACS47674.2019.9024731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this work we present the localization and navigation for a mobile robot in the outdoor environment. It is based on fusing the data from IMU, differential GPS and visual odometry using the extended Kalman filter framework. First, the IMU provides the heading angle information from the magnetometer and angular velocity, and GPS provides the absolute position information of the mobile robot. The image-based visual odometry is adopted to derive the moving distance and additional localization information. Finally, the mobile robot position is further refined using the extended Kalman filter. The experiments are carried out in the outdoor environment. We compare the results with the original GPS raw data, and the performance of the presented method is evaluated.
基于GPS、IMU和视觉里程计的移动机器人定位
本文研究了户外环境下移动机器人的定位与导航问题。它基于扩展卡尔曼滤波框架融合IMU、差分GPS和视觉里程计数据。首先,IMU提供来自磁力计和角速度的航向角信息,GPS提供移动机器人的绝对位置信息。采用基于图像的视觉里程计来获取运动距离和附加的定位信息。最后,利用扩展卡尔曼滤波进一步细化移动机器人的位置。实验是在室外环境下进行的。我们将结果与原始GPS原始数据进行了比较,并对该方法的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信