{"title":"Substrate integrated waveguide cavity-backed slot antenna for X-band imaging applications","authors":"M. Abou-Khousa, K. T. M. Shafi, Xingyu Xie","doi":"10.1109/I2MTC.2018.8409824","DOIUrl":null,"url":null,"abstract":"Non-invasive inspection, material evaluation and characterization are of paramount importance for quality control and structural health monitoring in various applications. Microwave imaging modalities have proven significant potential in such applications. Herein, a substrate integrated waveguide cavity-backed slot antenna is designed to operate in the X-band frequency range. The proposed antenna is modeled and analyzed using an electromagnetic simulation software, and its near-field characteristics are verified experimentally. The utility of the proposed antenna for imaging applications is demonstrated by imaging low-loss and high-loss material samples.","PeriodicalId":393766,"journal":{"name":"2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2018.8409824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Non-invasive inspection, material evaluation and characterization are of paramount importance for quality control and structural health monitoring in various applications. Microwave imaging modalities have proven significant potential in such applications. Herein, a substrate integrated waveguide cavity-backed slot antenna is designed to operate in the X-band frequency range. The proposed antenna is modeled and analyzed using an electromagnetic simulation software, and its near-field characteristics are verified experimentally. The utility of the proposed antenna for imaging applications is demonstrated by imaging low-loss and high-loss material samples.