D. Dasgupta, Fernando Niño, D. Garrett, Koyel Chaudhuri, Soujanya Medapati, Aishwarya Kaushal, James Simien
{"title":"A multiobjective evolutionary algorithm for the task based sailor assignment problem","authors":"D. Dasgupta, Fernando Niño, D. Garrett, Koyel Chaudhuri, Soujanya Medapati, Aishwarya Kaushal, James Simien","doi":"10.1145/1569901.1570099","DOIUrl":null,"url":null,"abstract":"This paper investigates a multiobjective formulation of the United States Navy's Task based Sailor Assignment Problem and examines the performance of a multiobjective evolutionary algorithm (MOEA), called NSGA-II, on large instances of this problem. Our previous work [3, 5, 4], consider the sailor assignment problem (SAP) as a static assignment, while the present work assumes it as a time dependent multitask SAP, making it a more complex problem, in fact, an NP-complete problem. Experimental results show that the presented genetic-based solution is appropriate for this problem.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This paper investigates a multiobjective formulation of the United States Navy's Task based Sailor Assignment Problem and examines the performance of a multiobjective evolutionary algorithm (MOEA), called NSGA-II, on large instances of this problem. Our previous work [3, 5, 4], consider the sailor assignment problem (SAP) as a static assignment, while the present work assumes it as a time dependent multitask SAP, making it a more complex problem, in fact, an NP-complete problem. Experimental results show that the presented genetic-based solution is appropriate for this problem.