A multiobjective evolutionary algorithm for the task based sailor assignment problem

D. Dasgupta, Fernando Niño, D. Garrett, Koyel Chaudhuri, Soujanya Medapati, Aishwarya Kaushal, James Simien
{"title":"A multiobjective evolutionary algorithm for the task based sailor assignment problem","authors":"D. Dasgupta, Fernando Niño, D. Garrett, Koyel Chaudhuri, Soujanya Medapati, Aishwarya Kaushal, James Simien","doi":"10.1145/1569901.1570099","DOIUrl":null,"url":null,"abstract":"This paper investigates a multiobjective formulation of the United States Navy's Task based Sailor Assignment Problem and examines the performance of a multiobjective evolutionary algorithm (MOEA), called NSGA-II, on large instances of this problem. Our previous work [3, 5, 4], consider the sailor assignment problem (SAP) as a static assignment, while the present work assumes it as a time dependent multitask SAP, making it a more complex problem, in fact, an NP-complete problem. Experimental results show that the presented genetic-based solution is appropriate for this problem.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper investigates a multiobjective formulation of the United States Navy's Task based Sailor Assignment Problem and examines the performance of a multiobjective evolutionary algorithm (MOEA), called NSGA-II, on large instances of this problem. Our previous work [3, 5, 4], consider the sailor assignment problem (SAP) as a static assignment, while the present work assumes it as a time dependent multitask SAP, making it a more complex problem, in fact, an NP-complete problem. Experimental results show that the presented genetic-based solution is appropriate for this problem.
基于任务的水手分配问题的多目标进化算法
本文研究了美国海军基于任务的水手分配问题的多目标公式,并检查了称为NSGA-II的多目标进化算法(MOEA)在该问题的大型实例中的性能。我们之前的工作[3,5,4]将水手分配问题(SAP)视为静态分配,而本工作将其假设为时间相关的多任务SAP,使其成为一个更复杂的问题,实际上是一个np完全问题。实验结果表明,本文提出的基于遗传算法的解决方案能够很好地解决这一问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信