{"title":"Model SEIRS Penyebaran Penyakit Tuberkulosis di Kota Makassar","authors":"Rahmat Syam, Syafruddin Side, Citra Suci Said","doi":"10.35580/JMATHCOS.V3I1.19180","DOIUrl":null,"url":null,"abstract":"Abstrak. Penelitian ini bertujuan untuk membangun model penyebaran penyakit tuberkulosis tipe SEIRS (Susceptible- Exposed- Infected- Recovered- Susceptible) dengan menambahkan asumsi bahwa manusia yang pulih dapat rentan kembali terkena tuberkulosis. Model ini dibagi menjadi empat kelas yaitu, rentan, terinfeksi tapi belum aktif, terinfeksi, dan sembuh. Data yang digunakan adalah data jumlah penderita penyakit tuberkulosis dari Dinas Kesehatan Kota Makassar tahun 2017. Model matematika tipe SEIRS digunakan untuk menentukan titik equilibrium. Berdasarkan hasil simulasi model SEIRS diperoleh bilangan reproduksi dasar ( ) sebesar 0,312 berarti bahwa seseorang yang terinfeksi penyakit tuberkulosis tidak menyebabkan orang lain terkena penyakit tuberkulosis di wilayah Kota Makassar.Kata Kunci: Titik Equilibrium, Bilangan Reproduksi Dasar, Tuberkulosis, Model SEIRS, Pemodelan.Abstract. This research aims to model of tuberculosis type SEIRS (Susceptible-Exposed-Infected-Recovery-Susceptible) by adding assumption that human that has been recovered can be suspected again by Tuberculosis. This model can be divided to four classes, those are suspected, exposed, infected, and recovered. The data that used is data on the number of tuberculosis sufferer from Health Department in Makassar City 2017. Mathematicsl model of SEIRS type is used to determine the equilibrium point. According to the simulation results of SEIRS model, obtained the base reproduction number ( ) is 0.312 means that people who infected by tuberculosis does not causes other people get tuberculosis in Makassat city.Keywords: Equilibrium Point, Basic Reproduction Numbers, Tuberculosis, SEIRS Model, modeling.","PeriodicalId":363413,"journal":{"name":"Journal of Mathematics Computations and Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics Computations and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35580/JMATHCOS.V3I1.19180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Abstrak. Penelitian ini bertujuan untuk membangun model penyebaran penyakit tuberkulosis tipe SEIRS (Susceptible- Exposed- Infected- Recovered- Susceptible) dengan menambahkan asumsi bahwa manusia yang pulih dapat rentan kembali terkena tuberkulosis. Model ini dibagi menjadi empat kelas yaitu, rentan, terinfeksi tapi belum aktif, terinfeksi, dan sembuh. Data yang digunakan adalah data jumlah penderita penyakit tuberkulosis dari Dinas Kesehatan Kota Makassar tahun 2017. Model matematika tipe SEIRS digunakan untuk menentukan titik equilibrium. Berdasarkan hasil simulasi model SEIRS diperoleh bilangan reproduksi dasar ( ) sebesar 0,312 berarti bahwa seseorang yang terinfeksi penyakit tuberkulosis tidak menyebabkan orang lain terkena penyakit tuberkulosis di wilayah Kota Makassar.Kata Kunci: Titik Equilibrium, Bilangan Reproduksi Dasar, Tuberkulosis, Model SEIRS, Pemodelan.Abstract. This research aims to model of tuberculosis type SEIRS (Susceptible-Exposed-Infected-Recovery-Susceptible) by adding assumption that human that has been recovered can be suspected again by Tuberculosis. This model can be divided to four classes, those are suspected, exposed, infected, and recovered. The data that used is data on the number of tuberculosis sufferer from Health Department in Makassar City 2017. Mathematicsl model of SEIRS type is used to determine the equilibrium point. According to the simulation results of SEIRS model, obtained the base reproduction number ( ) is 0.312 means that people who infected by tuberculosis does not causes other people get tuberculosis in Makassat city.Keywords: Equilibrium Point, Basic Reproduction Numbers, Tuberculosis, SEIRS Model, modeling.
抽象。本研究旨在建立一个疾病的传播结核病SEIRS类型(Susceptible模型-暴露感染Recovered - Susceptible)加上假设可以恢复脆弱的人回来得了肺结核。这个模型分为四类,即,容易感染但没有活跃,感染,愈合的。所使用的数据是2017年马卡萨卫生部门结核病患病率。SEIRS类型的数学模型用来确定平衡点。生殖SEIRS模型模拟结果数为基础()大0.312意味着感染了结核病不会引起别人的马卡萨市地区患肺结核。关键词:平衡一点,民数记基本生殖、结核病、SEIRS模型建模抽象。结核病的研究模型aims to SEIRS型(Susceptible-Exposed-Infected-Recovery-Susceptible):增加assumption,以至于人类已被recovered可以成为suspected by结核病。这个模型可以成为divided to four课堂,那些是suspected暴露、感染和recovered。当家》《那以前是数据上的结核病sufferer从卫生部门》和望加锡市2017年。Mathematicsl习惯个重大是平衡型模特SEIRS之分。弥足SEIRS模型,模拟results》获得《reproduction垒()是0.312意味着那个人谁当家:结核病感染确实不是敢死队别人弄到结核病》和Makassat城。安装:Basic Reproduction数字,结核病的平衡Point, SEIRS模特,模特。