Compression of indoor video sequences using homography-based segmentation

T. Park, S. Fleishman, D. Cohen-Or, Dani Lischinski
{"title":"Compression of indoor video sequences using homography-based segmentation","authors":"T. Park, S. Fleishman, D. Cohen-Or, Dani Lischinski","doi":"10.1109/PCCGA.2000.883952","DOIUrl":null,"url":null,"abstract":"We present a new compression algorithm for video sequences of indoor scenes, or more generally, sequences containing mostly planar and near-planar surfaces. Our approach utilizes edge and optical flow information in order to segment selected keyframes into regions of general shape, such that the motion of each region is predicted well by a planar homography. With this kind of motion prediction, the errors between the predicted intermediate frames and the actual ones are very small, and can be compactly encoded. Our results demonstrate significant improvements in the accuracy of the compressed video sequences, compared to standard general purpose video compression.","PeriodicalId":342067,"journal":{"name":"Proceedings the Eighth Pacific Conference on Computer Graphics and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings the Eighth Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCCGA.2000.883952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present a new compression algorithm for video sequences of indoor scenes, or more generally, sequences containing mostly planar and near-planar surfaces. Our approach utilizes edge and optical flow information in order to segment selected keyframes into regions of general shape, such that the motion of each region is predicted well by a planar homography. With this kind of motion prediction, the errors between the predicted intermediate frames and the actual ones are very small, and can be compactly encoded. Our results demonstrate significant improvements in the accuracy of the compressed video sequences, compared to standard general purpose video compression.
基于同形图分割的室内视频序列压缩
我们提出了一种新的压缩算法,用于室内场景的视频序列,或者更一般地说,包含大部分平面和近平面的序列。我们的方法利用边缘和光流信息来将选定的关键帧分割成一般形状的区域,这样每个区域的运动都可以通过平面单应性很好地预测。利用这种运动预测方法,预测的中间帧与实际中间帧之间的误差很小,并且可以进行紧凑的编码。我们的结果表明,与标准的通用视频压缩相比,压缩视频序列的准确性有了显着提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信