Explicit constructions of MDS array codes and RS codes with optimal repair bandwidth

Min Ye, A. Barg
{"title":"Explicit constructions of MDS array codes and RS codes with optimal repair bandwidth","authors":"Min Ye, A. Barg","doi":"10.1109/ISIT.2016.7541489","DOIUrl":null,"url":null,"abstract":"Given any r and n, we present an explicit construction of high-rate maximum distance separable (MDS) array codes that can optimally repair any d failed nodes from any h helper nodes for all h, 1 ≤ h ≤ r and d, k ≤ d ≤ n - h simultaneously. These codes can be constructed over any base field F as long as |F| ≥ sn; where s = lcm(1, 2,..., r). The encoding, decoding, repair of failed nodes, and update procedures of these codes all have low complexity. Our results present a significant improvement over earlier results which can only construct explicit codes for the case of at most 3 parity nodes, and these existing constructions can only optimally repair a single node failure by accessing all the surviving nodes. In the second part of the paper we give an explicit construction of Reed-Solomon codes with asymptotically optimal repair bandwidth.","PeriodicalId":198767,"journal":{"name":"2016 IEEE International Symposium on Information Theory (ISIT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2016.7541489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

Given any r and n, we present an explicit construction of high-rate maximum distance separable (MDS) array codes that can optimally repair any d failed nodes from any h helper nodes for all h, 1 ≤ h ≤ r and d, k ≤ d ≤ n - h simultaneously. These codes can be constructed over any base field F as long as |F| ≥ sn; where s = lcm(1, 2,..., r). The encoding, decoding, repair of failed nodes, and update procedures of these codes all have low complexity. Our results present a significant improvement over earlier results which can only construct explicit codes for the case of at most 3 parity nodes, and these existing constructions can only optimally repair a single node failure by accessing all the surviving nodes. In the second part of the paper we give an explicit construction of Reed-Solomon codes with asymptotically optimal repair bandwidth.
具有最优修复带宽的MDS阵列码和RS码的显式构造
在给定任意r和n的情况下,我们给出了一种高速率最大距离可分离(MDS)阵列码的显式构造,该阵列码可以同时在所有h, 1≤h≤r和d, k≤d≤n - h的情况下,从任意h个辅助节点最优地修复任意d个故障节点。这些码可以在任意基域F上构造,只要|F|≥sn;式中s = lcm(1,2,…, r)。这些代码的编码、解码、故障节点修复和更新过程的复杂度都很低。我们的结果比以前的结果有了显著的改进,以前的结果只能为最多3个奇偶节点的情况构造显式代码,并且这些现有的结构只能通过访问所有幸存的节点来最佳地修复单个节点故障。第二部分给出了具有渐近最优修复带宽的Reed-Solomon码的显式构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信