{"title":"Modeling state durations in hidden Markov models for automatic speech recognition","authors":"P. Ramesh, J. Wilpon","doi":"10.1109/ICASSP.1992.225892","DOIUrl":null,"url":null,"abstract":"Hidden Markov modeling (HMM) techniques have been used successfully for connected speech recognition in the last several years. In the traditional HMM algorithms, the probability of duration of a state decreases exponentially with time which is not appropriate for representing the temporal structure of speech. Non-parametric modeling of duration using semi-Markov chains does accomplish the task with a large increase in the computational complexity. Applying a postprocessing state duration penalty after Viterbi decoding adds very little computation but does not affect the forward recognition path. The authors present a way of modeling state durations in HMM using time-dependent state transitions. This inhomogeneous HMM (IHMM) does increase the computation by a small amount but reduces recognition error rates by 14-25%. Also, a suboptimal implementation of this scheme that requires no more computation than the traditional HMM is presented which also has reduced errors by 14-22% on a variety of databases.<<ETX>>","PeriodicalId":163713,"journal":{"name":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1992.225892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93
Abstract
Hidden Markov modeling (HMM) techniques have been used successfully for connected speech recognition in the last several years. In the traditional HMM algorithms, the probability of duration of a state decreases exponentially with time which is not appropriate for representing the temporal structure of speech. Non-parametric modeling of duration using semi-Markov chains does accomplish the task with a large increase in the computational complexity. Applying a postprocessing state duration penalty after Viterbi decoding adds very little computation but does not affect the forward recognition path. The authors present a way of modeling state durations in HMM using time-dependent state transitions. This inhomogeneous HMM (IHMM) does increase the computation by a small amount but reduces recognition error rates by 14-25%. Also, a suboptimal implementation of this scheme that requires no more computation than the traditional HMM is presented which also has reduced errors by 14-22% on a variety of databases.<>