A revised training mechanism for AdaBoost algorithm

Junwei Ge, Daobing Lu, Y. Fang
{"title":"A revised training mechanism for AdaBoost algorithm","authors":"Junwei Ge, Daobing Lu, Y. Fang","doi":"10.1109/ICSESS.2010.5552322","DOIUrl":null,"url":null,"abstract":"Focusing on the disadvantages of classical AdaBoost algorithm, this paper mainly analyzes the issues of excessive training, overfitting for classifiers and time-consuming in the training process, and a new method is advanced to avoid the problems. The new method is to update the training samples in time, regulate the update rules of sample weights and buffer the computational results of sorted feature values. As a result, the method used for training a cascade license plate, the experimental results show that the new method does not lead to the issues of excessive training, overfitting and time-consuming like classical AdaBoost often does, and moreover, the training time is shorted to 50 percent with a high detection rate and a low false alarm rate.","PeriodicalId":264630,"journal":{"name":"2010 IEEE International Conference on Software Engineering and Service Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Software Engineering and Service Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2010.5552322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Focusing on the disadvantages of classical AdaBoost algorithm, this paper mainly analyzes the issues of excessive training, overfitting for classifiers and time-consuming in the training process, and a new method is advanced to avoid the problems. The new method is to update the training samples in time, regulate the update rules of sample weights and buffer the computational results of sorted feature values. As a result, the method used for training a cascade license plate, the experimental results show that the new method does not lead to the issues of excessive training, overfitting and time-consuming like classical AdaBoost often does, and moreover, the training time is shorted to 50 percent with a high detection rate and a low false alarm rate.
AdaBoost算法的改进训练机制
针对经典AdaBoost算法的缺点,主要分析了训练过度、分类器过拟合以及训练过程耗时等问题,提出了一种新的方法来避免这些问题。该方法及时更新训练样本,调整样本权值的更新规则,缓冲特征值排序后的计算结果。实验结果表明,新方法不存在经典AdaBoost存在的过度训练、过拟合和耗时等问题,训练时间缩短至50%,检测率高,误报率低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信