On the benefit of using tight frames for robust data transmission and compressive data gathering in wireless sensor networks

Wei Chen, M. Rodrigues, I. Wassell
{"title":"On the benefit of using tight frames for robust data transmission and compressive data gathering in wireless sensor networks","authors":"Wei Chen, M. Rodrigues, I. Wassell","doi":"10.1109/ICC.2012.6363655","DOIUrl":null,"url":null,"abstract":"Compressive sensing (CS), a new sampling paradigm, has recently found several applications in wireless sensor networks (WSNs). In this paper, we investigate the design of novel sensing matrices which lead to good expected-case performance - a typical performance indicator in practice - rather than the conventional worst-case performance that is usually employed when assessing CS applications. In particular, we show that tight frames perform much better than the common CS Gaussian matrices in terms of the reconstruction average mean squared error (MSE). We also showcase the benefits of tight frames in two WSN applications, which involve: i) robustness to data sample losses; and ii) reduction of the communication cost.","PeriodicalId":331080,"journal":{"name":"2012 IEEE International Conference on Communications (ICC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2012.6363655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Compressive sensing (CS), a new sampling paradigm, has recently found several applications in wireless sensor networks (WSNs). In this paper, we investigate the design of novel sensing matrices which lead to good expected-case performance - a typical performance indicator in practice - rather than the conventional worst-case performance that is usually employed when assessing CS applications. In particular, we show that tight frames perform much better than the common CS Gaussian matrices in terms of the reconstruction average mean squared error (MSE). We also showcase the benefits of tight frames in two WSN applications, which involve: i) robustness to data sample losses; and ii) reduction of the communication cost.
在无线传感器网络中使用紧凑帧进行稳健数据传输和压缩数据采集的好处
压缩感知(CS)是一种新的采样模式,近年来在无线传感器网络(WSNs)中得到了广泛的应用。在本文中,我们研究了新型传感矩阵的设计,这些矩阵可以产生良好的预期情况性能(实践中的典型性能指标),而不是通常在评估CS应用时使用的传统最坏情况性能。特别是,我们表明紧框架在重建平均均方误差(MSE)方面比普通CS高斯矩阵表现得更好。我们还展示了紧框架在两个WSN应用中的好处,其中包括:i)对数据样本损失的鲁棒性;二是降低通信成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信