Estimation of the Arc Model Parameters Using Heuristic Optimization Methods

Sadegh Ghavami, A. Razi-Kazemi, K. Niayesh
{"title":"Estimation of the Arc Model Parameters Using Heuristic Optimization Methods","authors":"Sadegh Ghavami, A. Razi-Kazemi, K. Niayesh","doi":"10.1109/ICEE52715.2021.9544132","DOIUrl":null,"url":null,"abstract":"The black box arc model is a valuable tool to describe the switching during the arcing time in AC and DC circuit breakers. It can provide an efficient approach to integrate the arc model in the network for investigating the interaction between arc and network. However, the reliable determination of arc model parameters based on the voltage and current waveforms is a challenging issue. This paper presents an estimation approach to the arc parameters based on the linear and nonlinear description of the Mayr arc model concerning the sinusoidal and non-sinusoidal current waveforms. Accordingly, Heuristic optimization methods such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have been used to assess the algorithms and for evaluating the parameters of arc models.","PeriodicalId":254932,"journal":{"name":"2021 29th Iranian Conference on Electrical Engineering (ICEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 29th Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEE52715.2021.9544132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The black box arc model is a valuable tool to describe the switching during the arcing time in AC and DC circuit breakers. It can provide an efficient approach to integrate the arc model in the network for investigating the interaction between arc and network. However, the reliable determination of arc model parameters based on the voltage and current waveforms is a challenging issue. This paper presents an estimation approach to the arc parameters based on the linear and nonlinear description of the Mayr arc model concerning the sinusoidal and non-sinusoidal current waveforms. Accordingly, Heuristic optimization methods such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have been used to assess the algorithms and for evaluating the parameters of arc models.
基于启发式优化方法的电弧模型参数估计
黑箱电弧模型是描述交直流断路器电弧过程中开关状态的有效工具。它为研究电弧与网络之间的相互作用提供了一种有效的方法将电弧模型集成到网络中。然而,基于电压和电流波形的电弧模型参数的可靠确定是一个具有挑战性的问题。基于Mayr电弧模型对正弦波和非正弦波电流波形的线性和非线性描述,提出了一种电弧参数的估计方法。因此,启发式优化方法如遗传算法(GA)和粒子群优化(PSO)被用于评估算法和评估弧模型的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信