2D-3D CNN Based Architectures for Spectral Reconstruction from RGB Images

Sriharsha Koundinya, Himanshu Sharma, Manoj Sharma, Avinash Upadhyay, Raunak Manekar, Rudrabha Mukhopadhyay, A. Karmakar, S. Chaudhury
{"title":"2D-3D CNN Based Architectures for Spectral Reconstruction from RGB Images","authors":"Sriharsha Koundinya, Himanshu Sharma, Manoj Sharma, Avinash Upadhyay, Raunak Manekar, Rudrabha Mukhopadhyay, A. Karmakar, S. Chaudhury","doi":"10.1109/CVPRW.2018.00129","DOIUrl":null,"url":null,"abstract":"Hyperspectral cameras are used to preserve fine spectral details of scenes that are not captured by traditional RGB cameras that comprehensively quantizes radiance in RGB images. Spectral details provide additional information that improves the performance of numerous image based analytic applications, but due to high hyperspectral hardware cost and associated physical constraints, hyperspectral images are not easily available for further processing. Motivated by the performance of deep learning for various computer vision applications, we propose a 2D convolution neural network and a 3D convolution neural network based approaches for hyperspectral image reconstruction from RGB images. A 2D-CNN model primarily focuses on extracting spectral data by considering only spatial correlation of the channels in the image, while in 3D-CNN model the inter-channel co-relation is also exploited to refine the extraction of spectral data. Our 3D-CNN based architecture achieves very good performance in terms of MRAE and RMSE. In contrast to 3D-CNN, our 2D-CNN based architecture also achieves comparable performance with very less computational complexity.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Hyperspectral cameras are used to preserve fine spectral details of scenes that are not captured by traditional RGB cameras that comprehensively quantizes radiance in RGB images. Spectral details provide additional information that improves the performance of numerous image based analytic applications, but due to high hyperspectral hardware cost and associated physical constraints, hyperspectral images are not easily available for further processing. Motivated by the performance of deep learning for various computer vision applications, we propose a 2D convolution neural network and a 3D convolution neural network based approaches for hyperspectral image reconstruction from RGB images. A 2D-CNN model primarily focuses on extracting spectral data by considering only spatial correlation of the channels in the image, while in 3D-CNN model the inter-channel co-relation is also exploited to refine the extraction of spectral data. Our 3D-CNN based architecture achieves very good performance in terms of MRAE and RMSE. In contrast to 3D-CNN, our 2D-CNN based architecture also achieves comparable performance with very less computational complexity.
基于2D-3D CNN的RGB图像光谱重建架构
高光谱相机用于保留传统RGB相机无法捕捉到的场景的精细光谱细节,对RGB图像中的亮度进行全面量化。光谱细节提供了额外的信息,提高了许多基于图像的分析应用程序的性能,但由于高光谱硬件成本和相关的物理限制,高光谱图像不容易用于进一步处理。基于深度学习在各种计算机视觉应用中的表现,我们提出了一种基于二维卷积神经网络和三维卷积神经网络的方法,用于从RGB图像重建高光谱图像。2D-CNN模型主要是通过考虑图像中通道的空间相关性来提取光谱数据,而3D-CNN模型还利用通道间的相关关系来改进光谱数据的提取。我们基于3D-CNN的架构在MRAE和RMSE方面取得了非常好的性能。与3D-CNN相比,我们基于2D-CNN的架构在计算复杂度非常低的情况下也实现了相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信