A framework for high level semantic annotation using trusted object annotated dataset

Irfanullah, N. Aslam, Jonathan Loo, M. Loomes, Roohullah
{"title":"A framework for high level semantic annotation using trusted object annotated dataset","authors":"Irfanullah, N. Aslam, Jonathan Loo, M. Loomes, Roohullah","doi":"10.1109/ISSPIT.2010.5711740","DOIUrl":null,"url":null,"abstract":"Dramatic expansion and eminence of the multimedia data from the last decades, culminates to a trouble in managing, accessing and annotating the data. The high level semantic annotation (HLS) of resources in general and multimedia resources in particular, is a resilient job. The Progression in automatic annotation mechanisms have not been able to comprehend with adequately accurate results. To outfit multimedia (e.g. image/video) retrieval capabilities, digital libraries have hung on manual annotation of images. Providing a track to enact high level semantic annotation automatically would be more worthwhile, efficient and scalable with magnifying image collections. This paper intent to equip the high level semantic annotation for images, and consequently, contributes to 1) calculating semantic intensity (SI) of each object in the image depicting the dominancy factor, (2) image similarity on the bases on metadata tag with the images, and (3) clustering approach based on the image similarity to tag set of images with a high level semantic description with their calculated similarity values. The experiment on a portion of randomly selected images from LabelMe database manifests stimulating outcomes.","PeriodicalId":308189,"journal":{"name":"The 10th IEEE International Symposium on Signal Processing and Information Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 10th IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2010.5711740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Dramatic expansion and eminence of the multimedia data from the last decades, culminates to a trouble in managing, accessing and annotating the data. The high level semantic annotation (HLS) of resources in general and multimedia resources in particular, is a resilient job. The Progression in automatic annotation mechanisms have not been able to comprehend with adequately accurate results. To outfit multimedia (e.g. image/video) retrieval capabilities, digital libraries have hung on manual annotation of images. Providing a track to enact high level semantic annotation automatically would be more worthwhile, efficient and scalable with magnifying image collections. This paper intent to equip the high level semantic annotation for images, and consequently, contributes to 1) calculating semantic intensity (SI) of each object in the image depicting the dominancy factor, (2) image similarity on the bases on metadata tag with the images, and (3) clustering approach based on the image similarity to tag set of images with a high level semantic description with their calculated similarity values. The experiment on a portion of randomly selected images from LabelMe database manifests stimulating outcomes.
使用可信对象注释数据集的高级语义注释框架
近几十年来,多媒体数据的急剧膨胀和突出,导致了数据管理、访问和注释方面的困难。资源的高级语义注释(HLS)是一项具有弹性的工作。自动注释机制的进展还不能提供足够准确的理解结果。为了配备多媒体(例如图像/视频)检索功能,数字图书馆一直采用手动注释图像。通过放大图像集合,提供自动执行高级语义注释的跟踪将更有价值、更高效、更可扩展。本文旨在为图像提供高层次的语义标注,从而实现1)计算图像中每个对象描述主导因子的语义强度(SI),(2)基于元数据标签的图像与图像的相似度,以及(3)基于图像与具有高层次语义描述的图像的标签集的相似度及其计算出的相似度值的聚类方法。在LabelMe数据库中随机选取部分图像进行实验,结果令人振奋。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信