AFM Surface Roughness and Depth Measurement of Trenches with High Aspect Ratio

F. Heider, Helfried Schwarzfurtner, Mario Lugger, Sang-Joon Cho, T. Trenkler
{"title":"AFM Surface Roughness and Depth Measurement of Trenches with High Aspect Ratio","authors":"F. Heider, Helfried Schwarzfurtner, Mario Lugger, Sang-Joon Cho, T. Trenkler","doi":"10.1109/ASMC.2019.8791811","DOIUrl":null,"url":null,"abstract":"Roughness measurements on epitaxial layers before and after etching were done with an atomic force microscope (AFM) with sub-Angstrom repeatability. Furthermore, surface roughness was monitored with AFM after chemical mechanical polishing, before a wafer was bonded to another wafer. It was observed that measuring in non-contact mode reduces the tip wear and extends the life time of AFM tips. We also show that a resist recess in narrow trenches which cannot be measured with scatterometry is easily measured with a high-aspect-ratio tip on AFM. The offset between the AFMs in two different fabs is currently less than 5 nm, when a trench depth recipe is transferred from one tool to another.","PeriodicalId":287541,"journal":{"name":"2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"16 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC.2019.8791811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Roughness measurements on epitaxial layers before and after etching were done with an atomic force microscope (AFM) with sub-Angstrom repeatability. Furthermore, surface roughness was monitored with AFM after chemical mechanical polishing, before a wafer was bonded to another wafer. It was observed that measuring in non-contact mode reduces the tip wear and extends the life time of AFM tips. We also show that a resist recess in narrow trenches which cannot be measured with scatterometry is easily measured with a high-aspect-ratio tip on AFM. The offset between the AFMs in two different fabs is currently less than 5 nm, when a trench depth recipe is transferred from one tool to another.
高纵横比沟的AFM表面粗糙度和深度测量
采用亚埃重复性原子力显微镜(AFM)对外延层蚀刻前后的粗糙度进行了测量。此外,在化学机械抛光后,在晶圆与另一个晶圆粘合之前,用原子力显微镜监测表面粗糙度。结果表明,采用非接触方式测量可减少针尖磨损,延长AFM针尖的使用寿命。我们还表明,在狭窄的沟槽中,用散射法无法测量的抗蚀凹槽可以用AFM上的高纵横比尖端容易测量。当沟槽深度配方从一个工具转移到另一个工具时,两个不同晶圆厂的原子力显微镜之间的偏移量目前小于5纳米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信