{"title":"Constructing and understanding Bayesian networks for legal evidence with scenario schemes","authors":"C. Vlek, H. Prakken, S. Renooij, Bart Verheij","doi":"10.1145/2746090.2746097","DOIUrl":null,"url":null,"abstract":"In a criminal trial, a judge or jury needs to reach a conclusion about 'what happened' based on the available evidence. Often this includes probabilistic evidence. Whereas Bayesian networks form a good tool for analysing evidence probabilistically, simply presenting the outcome of the network to a judge or jury does not allow them to make an informed decision. In this paper, we propose to combine Bayesian networks with a narrative approach to reasoning with legal evidence, the result of which allows a juror to reason with alternative scenarios while also incorporating probabilistic information. The proposed method aids both the construction and the understanding of Bayesian networks, using scenario schemes. We make three distinct contributions: (1) we propose to use scenario schemes to aid the construction of Bayesian networks, (2) we propose a method for producing scenarios in text form from the resulting networks and (3) we propose a format for reporting the alternative scenarios and their relations to the evidence (including strength).","PeriodicalId":309125,"journal":{"name":"Proceedings of the 15th International Conference on Artificial Intelligence and Law","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Conference on Artificial Intelligence and Law","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746090.2746097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In a criminal trial, a judge or jury needs to reach a conclusion about 'what happened' based on the available evidence. Often this includes probabilistic evidence. Whereas Bayesian networks form a good tool for analysing evidence probabilistically, simply presenting the outcome of the network to a judge or jury does not allow them to make an informed decision. In this paper, we propose to combine Bayesian networks with a narrative approach to reasoning with legal evidence, the result of which allows a juror to reason with alternative scenarios while also incorporating probabilistic information. The proposed method aids both the construction and the understanding of Bayesian networks, using scenario schemes. We make three distinct contributions: (1) we propose to use scenario schemes to aid the construction of Bayesian networks, (2) we propose a method for producing scenarios in text form from the resulting networks and (3) we propose a format for reporting the alternative scenarios and their relations to the evidence (including strength).