Deep learning stacking for financial time series forecasting: an analysis with synthetic and real-world time series

Eder Urbinate, L. Felizardo, E. Del-Moral-Hernandez
{"title":"Deep learning stacking for financial time series forecasting: an analysis with synthetic and real-world time series","authors":"Eder Urbinate, L. Felizardo, E. Del-Moral-Hernandez","doi":"10.5753/eniac.2022.227540","DOIUrl":null,"url":null,"abstract":"The forecasting problem is one of the main applications arising from the synergy between finance and artificial intelligence. With the advancement in the field of deep learning, some ANN achieved very satisfactory results and gained more attention. One approach to increase the time series forecasting model’s performance is ensemble models, combining each model’s prediction (stacking). However, there are some difficulties in combining and evaluating these models for a good performance in financial time series. We use synthetic and real-world time series to evaluate the model stacking, trying to understand the main financial time series components. Using this ensemble method, we reduced the prediction error for both scenarios.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The forecasting problem is one of the main applications arising from the synergy between finance and artificial intelligence. With the advancement in the field of deep learning, some ANN achieved very satisfactory results and gained more attention. One approach to increase the time series forecasting model’s performance is ensemble models, combining each model’s prediction (stacking). However, there are some difficulties in combining and evaluating these models for a good performance in financial time series. We use synthetic and real-world time series to evaluate the model stacking, trying to understand the main financial time series components. Using this ensemble method, we reduced the prediction error for both scenarios.
金融时间序列预测的深度学习叠加:与合成和现实世界时间序列的分析
预测问题是金融与人工智能协同作用的主要应用之一。随着深度学习领域的发展,一些人工神经网络取得了令人满意的效果,受到了越来越多的关注。提高时间序列预测模型性能的一种方法是集成模型,将每个模型的预测组合在一起(叠加)。然而,在结合和评估这些模型以获得良好的金融时间序列性能方面存在一些困难。我们使用合成时间序列和真实世界的时间序列来评估模型的叠加,试图理解金融时间序列的主要组成部分。使用这种集成方法,我们减少了两种情况下的预测误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信