Pattern Discovery from Directional High-Order Drug-Drug Interaction Relations

Xia Ning, T. Schleyer, Li Shen, Lang Li
{"title":"Pattern Discovery from Directional High-Order Drug-Drug Interaction Relations","authors":"Xia Ning, T. Schleyer, Li Shen, Lang Li","doi":"10.1109/ICHI.2017.20","DOIUrl":null,"url":null,"abstract":"Drug-Drug Interactions (DDIs) and associated Adverse Drug Reactions (ADRs) represent a significant public health problem in the United States. The research presented in this paper tackles the problems of representing, discovering, quantifying and visualizing patterns from high-order DDIs in a purely data-driven fashion. We formulate the problems based on a notion of directional DDI relations and correspondingly developed weighted hyper-graphlets for their representation. We also develop a convolutional scheme and its stochastic algorithm SD3ID2S to learn the directional DDI based drug-drug similarities. Our experimental results demonstrate that such approaches can well capture the patterns from high-order DDIs.","PeriodicalId":263611,"journal":{"name":"2017 IEEE International Conference on Healthcare Informatics (ICHI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Healthcare Informatics (ICHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHI.2017.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Drug-Drug Interactions (DDIs) and associated Adverse Drug Reactions (ADRs) represent a significant public health problem in the United States. The research presented in this paper tackles the problems of representing, discovering, quantifying and visualizing patterns from high-order DDIs in a purely data-driven fashion. We formulate the problems based on a notion of directional DDI relations and correspondingly developed weighted hyper-graphlets for their representation. We also develop a convolutional scheme and its stochastic algorithm SD3ID2S to learn the directional DDI based drug-drug similarities. Our experimental results demonstrate that such approaches can well capture the patterns from high-order DDIs.
定向高阶药物-药物相互作用关系的模式发现
药物-药物相互作用(ddi)和相关的药物不良反应(adr)是美国一个重要的公共卫生问题。本文提出的研究解决了以纯数据驱动的方式从高阶ddi中表示、发现、量化和可视化模式的问题。我们基于方向性DDI关系的概念来表述这些问题,并相应地开发了加权超石墨烯来表示它们。我们还开发了一种卷积方案及其随机算法SD3ID2S来学习基于定向DDI的药物-药物相似性。实验结果表明,这种方法可以很好地捕获高阶ddi的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信