S. Yamamoto, J. Valin, K. Nakadai, J. Rouat, F. Michaud, T. Ogata, HIroshi G. Okuno
{"title":"Enhanced Robot Speech Recognition Based on Microphone Array Source Separation and Missing Feature Theory","authors":"S. Yamamoto, J. Valin, K. Nakadai, J. Rouat, F. Michaud, T. Ogata, HIroshi G. Okuno","doi":"10.1109/ROBOT.2005.1570323","DOIUrl":null,"url":null,"abstract":"A humanoid robot under real-world environments usually hears mixtures of sounds, and thus three capabilities are essential for robot audition; sound source localization, separation, and recognition of separated sounds. While the first two are frequently addressed, the last one has not been studied so much. We present a system that gives a humanoid robot the ability to localize, separate and recognize simultaneous sound sources. A microphone array is used along with a real-time dedicated implementation of Geometric Source Separation (GSS) and a multi-channel post-filter that gives us a further reduction of interferences from other sources. An automatic speech recognizer (ASR) based on the Missing Feature Theory (MFT) recognizes separated sounds in real-time by generating missing feature masks automatically from the post-filtering step. The main advantage of this approach for humanoid robots resides in the fact that the ASR with a clean acoustic model can adapt the distortion of separated sound by consulting the post-filter feature masks. Recognition rates are presented for three simultaneous speakers located at 2m from the robot. Use of both the post-filter and the missing feature mask results in an average reduction in error rate of 42% (relative).","PeriodicalId":350878,"journal":{"name":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2005.1570323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79
Abstract
A humanoid robot under real-world environments usually hears mixtures of sounds, and thus three capabilities are essential for robot audition; sound source localization, separation, and recognition of separated sounds. While the first two are frequently addressed, the last one has not been studied so much. We present a system that gives a humanoid robot the ability to localize, separate and recognize simultaneous sound sources. A microphone array is used along with a real-time dedicated implementation of Geometric Source Separation (GSS) and a multi-channel post-filter that gives us a further reduction of interferences from other sources. An automatic speech recognizer (ASR) based on the Missing Feature Theory (MFT) recognizes separated sounds in real-time by generating missing feature masks automatically from the post-filtering step. The main advantage of this approach for humanoid robots resides in the fact that the ASR with a clean acoustic model can adapt the distortion of separated sound by consulting the post-filter feature masks. Recognition rates are presented for three simultaneous speakers located at 2m from the robot. Use of both the post-filter and the missing feature mask results in an average reduction in error rate of 42% (relative).