Chinder Wey, Chan-I Chiu, K. Chang, Chung-Hsien Hsu, G. Sung
{"title":"Design of ultra-wide-load, high-efficient DC-DC buck converters","authors":"Chinder Wey, Chan-I Chiu, K. Chang, Chung-Hsien Hsu, G. Sung","doi":"10.1109/ICECS.2011.6122272","DOIUrl":null,"url":null,"abstract":"The paper presents the design of a current-mode control DC-DC buck converter with pulse-width modulation (PWM) mode. The converter achieves a current load ranged from 50 mA to 500 mA over 90% efficiency, and the maximum power efficiency is 95.6%, where the circuit was simulated with the TSMC 0.35 um CMOS process. In order to achieve ultra-wide-load high efficiency, this paper implements with two PMOS transistors as switches. Results show that the converter achieves above 90% efficiency at the range from 30 mA to 1200 mA with a maximum efficiency of 96.36%. Results show that, with the additional switch transistor, the current load range is expanded more than double. With two PMOS transistors, the proposed converter can also achieve 3 different load ranges so that it can be programmed for the applications which are operated at those three different load ranges.","PeriodicalId":251525,"journal":{"name":"2011 18th IEEE International Conference on Electronics, Circuits, and Systems","volume":"04 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 18th IEEE International Conference on Electronics, Circuits, and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2011.6122272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The paper presents the design of a current-mode control DC-DC buck converter with pulse-width modulation (PWM) mode. The converter achieves a current load ranged from 50 mA to 500 mA over 90% efficiency, and the maximum power efficiency is 95.6%, where the circuit was simulated with the TSMC 0.35 um CMOS process. In order to achieve ultra-wide-load high efficiency, this paper implements with two PMOS transistors as switches. Results show that the converter achieves above 90% efficiency at the range from 30 mA to 1200 mA with a maximum efficiency of 96.36%. Results show that, with the additional switch transistor, the current load range is expanded more than double. With two PMOS transistors, the proposed converter can also achieve 3 different load ranges so that it can be programmed for the applications which are operated at those three different load ranges.