Implementing Discrete Control for the Horizontal Positioning of an Industrial Manipulator Using MATLAB

I. Clitan, V. Muresan, M. Abrudean, A. Clitan
{"title":"Implementing Discrete Control for the Horizontal Positioning of an Industrial Manipulator Using MATLAB","authors":"I. Clitan, V. Muresan, M. Abrudean, A. Clitan","doi":"10.7763/ijmo.2020.v10.750","DOIUrl":null,"url":null,"abstract":"The presented paper descries the implementation of a discrete control law, for an industrial manipulator, using MATLAB as computer software. The software implementation is done in order to test the overall performances of the discrete control law, since the on-site testing is not possible due tot the continuous functioning of the industrial manipulator as an unloading billets machine from a rotary hearth furnace, part of the hot rolling process. First, the magnitude optimum criterion, the Kessler variant, is applied as tuning method for the industrial manipulator’s positioning system since the continuous model is already known, due to prior research. Further, the discrete control is derived from the pulse transfer function yielded from digitizing the continuous control. The discrete control law is implemented as a discrete control structure using unit delay blocks and as a dependency law using the MATLAB function block. The overall performances are tested, and they meet the performance expected by Kessler's tuning method.","PeriodicalId":134487,"journal":{"name":"International Journal of Modeling and Optimization","volume":"140 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modeling and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7763/ijmo.2020.v10.750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The presented paper descries the implementation of a discrete control law, for an industrial manipulator, using MATLAB as computer software. The software implementation is done in order to test the overall performances of the discrete control law, since the on-site testing is not possible due tot the continuous functioning of the industrial manipulator as an unloading billets machine from a rotary hearth furnace, part of the hot rolling process. First, the magnitude optimum criterion, the Kessler variant, is applied as tuning method for the industrial manipulator’s positioning system since the continuous model is already known, due to prior research. Further, the discrete control is derived from the pulse transfer function yielded from digitizing the continuous control. The discrete control law is implemented as a discrete control structure using unit delay blocks and as a dependency law using the MATLAB function block. The overall performances are tested, and they meet the performance expected by Kessler's tuning method.
用MATLAB实现工业机械手水平定位的离散控制
本文描述了用MATLAB作为计算机软件实现工业机械臂的离散控制律。软件实现是为了测试离散控制律的整体性能,因为现场测试是不可能的,因为工业机械手作为热轧过程的一部分,从旋转底炉卸载钢坯机的连续功能。首先,由于前人的研究已经知道了连续模型,因此将数量级最优准则Kessler变式作为工业机械手定位系统的整定方法。此外,离散控制是由数字化连续控制产生的脉冲传递函数导出的。离散控制律使用单元延迟块实现为离散控制结构,使用MATLAB函数块实现为依赖律。对系统的总体性能进行了测试,达到了Kessler调优法所期望的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信