Facial Action Detection Using Block-Based Pyramid Appearance Descriptors

Bihan Jiang, M. Valstar, M. Pantic
{"title":"Facial Action Detection Using Block-Based Pyramid Appearance Descriptors","authors":"Bihan Jiang, M. Valstar, M. Pantic","doi":"10.1109/SocialCom-PASSAT.2012.69","DOIUrl":null,"url":null,"abstract":"Facial expression is one of the most important non-verbal behavioural cues in social signals. Constructing an effective face representation from images is an essential step for successful facial behaviour analysis. Most existing face descriptors operate on the same scale, and do not leverage coarse v.s. fine methods such as image pyramids. In this work, we propose the sparse appearance descriptors Block-based Pyramid Local Binary Pattern (B-PLBP) and Block-based Pyramid Local Phase Quantisation (B-PLPQ). The effectiveness of our proposed descriptors is evaluated by a real-time facial action recognition system. The performance of B-PLBP and B-PLPQ is also compared with Block-based Local Binary Patterns (B-LBP) and Block-based Local Phase Quantisation (B-LPQ). The system proposed here enables detection a much larger range of facial behaviour by detecting 22 facial muscle actions (Action Units, AUs), which can be practically applied for social behaviour analysis and synthesis. Results show that our proposed descriptor B-PLPQ outperforms all other tested methods for the problem of FACS Action Unit analysis and that systems which utilise a pyramid representation outperform those that use basic appearance descriptors.","PeriodicalId":129526,"journal":{"name":"2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SocialCom-PASSAT.2012.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Facial expression is one of the most important non-verbal behavioural cues in social signals. Constructing an effective face representation from images is an essential step for successful facial behaviour analysis. Most existing face descriptors operate on the same scale, and do not leverage coarse v.s. fine methods such as image pyramids. In this work, we propose the sparse appearance descriptors Block-based Pyramid Local Binary Pattern (B-PLBP) and Block-based Pyramid Local Phase Quantisation (B-PLPQ). The effectiveness of our proposed descriptors is evaluated by a real-time facial action recognition system. The performance of B-PLBP and B-PLPQ is also compared with Block-based Local Binary Patterns (B-LBP) and Block-based Local Phase Quantisation (B-LPQ). The system proposed here enables detection a much larger range of facial behaviour by detecting 22 facial muscle actions (Action Units, AUs), which can be practically applied for social behaviour analysis and synthesis. Results show that our proposed descriptor B-PLPQ outperforms all other tested methods for the problem of FACS Action Unit analysis and that systems which utilise a pyramid representation outperform those that use basic appearance descriptors.
基于块的金字塔外观描述符的面部动作检测
面部表情是社会信号中最重要的非语言行为线索之一。从图像中构建有效的面部表征是成功进行面部行为分析的必要步骤。大多数现有的人脸描述符都在相同的尺度上运行,并且没有利用图像金字塔等粗糙与精细的方法。在这项工作中,我们提出了稀疏外观描述符基于块的金字塔局部二进制模式(B-PLBP)和基于块的金字塔局部相位量化(B-PLPQ)。我们提出的描述符的有效性通过一个实时面部动作识别系统进行了评估。将B-PLBP和B-PLPQ的性能与基于块的局部二进制模式(B-LBP)和基于块的局部相位量化(B-LPQ)进行了比较。本文提出的系统可以通过检测22个面部肌肉动作(Action Units, au)来检测更大范围的面部行为,可以实际应用于社会行为分析和综合。结果表明,我们提出的描述符B-PLPQ优于FACS行动单元分析问题的所有其他测试方法,并且使用金字塔表示的系统优于使用基本外观描述符的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信