Realization of frequency-domain circuit analysis through random walk

T. Miyakawa, Hiroshi Tsutsui, H. Ochi, Takashi Sato
{"title":"Realization of frequency-domain circuit analysis through random walk","authors":"T. Miyakawa, Hiroshi Tsutsui, H. Ochi, Takashi Sato","doi":"10.1109/ASPDAC.2013.6509591","DOIUrl":null,"url":null,"abstract":"This paper presents the realization of frequency-domain circuit analysis based on random walk framework for the first time. In conventional random walk based circuit analyses, the sample movement at a node is randomly chosen to follow the edge probabilities. The probabilities are determined by edge-admittances connecting to the node, which is impossible to apply for the frequency-domain analysis because the probabilities are imaginary numbers. By applying the idea of importance sampling, the intractable imaginary probabilities are converted into real numbers while maintaining the estimation correctness. Runtime acceleration through incremental analysis is also proposed.","PeriodicalId":297528,"journal":{"name":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2013.6509591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the realization of frequency-domain circuit analysis based on random walk framework for the first time. In conventional random walk based circuit analyses, the sample movement at a node is randomly chosen to follow the edge probabilities. The probabilities are determined by edge-admittances connecting to the node, which is impossible to apply for the frequency-domain analysis because the probabilities are imaginary numbers. By applying the idea of importance sampling, the intractable imaginary probabilities are converted into real numbers while maintaining the estimation correctness. Runtime acceleration through incremental analysis is also proposed.
通过随机游走实现频域电路分析
本文首次提出了基于随机游走框架的频域电路分析的实现方法。在传统的基于随机行走的电路分析中,样本在一个节点上的移动是随机选择的,以遵循边缘概率。概率由连接节点的边导纳决定,由于概率是虚数,无法用于频域分析。利用重要抽样的思想,在保证估计正确性的前提下,将难以处理的虚概率转化为实数。还提出了通过增量分析实现运行时加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信