Does Academic Research Destroy Stock Return Predictability?

R. McLean, Jeffrey Pontiff
{"title":"Does Academic Research Destroy Stock Return Predictability?","authors":"R. McLean, Jeffrey Pontiff","doi":"10.2139/ssrn.2156623","DOIUrl":null,"url":null,"abstract":"We study the out-of-sample and post-publication return predictability of 97 variables shown to predict cross-sectional stock returns. Portfolio returns are 26% lower out-of-sample and 58% lower post-publication. The out-of-sample decline is an upper bound estimate of data mining effects. We estimate a 32% (58%–26%) lower return from publication-informed trading. Post-publication declines are greater for predictors with higher in-sample returns, and returns are higher for portfolios concentrated in stocks with high idiosyncratic risk and low liquidity. Predictor portfolios exhibit post-publication increases in correlations with other published-predictor portfolios. Our findings suggest that investors learn about mispricing from academic publications.","PeriodicalId":242545,"journal":{"name":"ERN: Econometric Studies of Capital Markets (Topic)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"990","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Econometric Studies of Capital Markets (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2156623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 990

Abstract

We study the out-of-sample and post-publication return predictability of 97 variables shown to predict cross-sectional stock returns. Portfolio returns are 26% lower out-of-sample and 58% lower post-publication. The out-of-sample decline is an upper bound estimate of data mining effects. We estimate a 32% (58%–26%) lower return from publication-informed trading. Post-publication declines are greater for predictors with higher in-sample returns, and returns are higher for portfolios concentrated in stocks with high idiosyncratic risk and low liquidity. Predictor portfolios exhibit post-publication increases in correlations with other published-predictor portfolios. Our findings suggest that investors learn about mispricing from academic publications.
学术研究破坏了股票收益的可预测性吗?
我们研究了样本外和出版后收益的可预测性的97变量显示预测横截面股票收益。样本外投资组合收益降低26%,出版后投资组合收益降低58%。样本外下降是数据挖掘效果的上界估计。我们估计,公开信息交易的回报率会降低32%(58%-26%)。样本内回报率较高的预测指标在发表后的跌幅更大,而集中于高特质风险和低流动性股票的投资组合的回报率更高。预测组合与其他已发布的预测组合的相关性在发表后增加。我们的研究结果表明,投资者从学术出版物中学到了错误定价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信