Simultaneous segmentation and tumor detection in MRI cervical cancer radiation therapy with Hierarchical Adaptive Local Affine Registration

V. Remya, V. L. Lekshmi Priya
{"title":"Simultaneous segmentation and tumor detection in MRI cervical cancer radiation therapy with Hierarchical Adaptive Local Affine Registration","authors":"V. Remya, V. L. Lekshmi Priya","doi":"10.1109/ICCCI.2014.6921732","DOIUrl":null,"url":null,"abstract":"External Beam Radiation therapy (EBRT) for the cancer treatment enables accurate placement of radiation dose on cancerous region. The presence and regression of tumors may violate registration constraints and cause registration errors. Automatic segmentation and tumor detection in cervical MR data are addressed in this paper. The proposed method of registration identifies the boundary of an organ of interest based on Hierarchical Adaptive Local Affine Registration. It combines the transformation at each level of all local affine components to form an overall smooth transformation. Optimization is achieved by Hybrid Particle Swarm Optimization (HPSO).The proposed approach may achieve an improved accuracy than the existing registration algorithms such as Rigid Registration and Non-Rigid Registration.","PeriodicalId":244242,"journal":{"name":"2014 International Conference on Computer Communication and Informatics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Computer Communication and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCI.2014.6921732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

External Beam Radiation therapy (EBRT) for the cancer treatment enables accurate placement of radiation dose on cancerous region. The presence and regression of tumors may violate registration constraints and cause registration errors. Automatic segmentation and tumor detection in cervical MR data are addressed in this paper. The proposed method of registration identifies the boundary of an organ of interest based on Hierarchical Adaptive Local Affine Registration. It combines the transformation at each level of all local affine components to form an overall smooth transformation. Optimization is achieved by Hybrid Particle Swarm Optimization (HPSO).The proposed approach may achieve an improved accuracy than the existing registration algorithms such as Rigid Registration and Non-Rigid Registration.
层次自适应局部仿射配准在MRI宫颈癌放射治疗中的同时分割与肿瘤检测
外束放射治疗(EBRT)用于癌症治疗,能够准确地将辐射剂量放置在癌变区域。肿瘤的存在和消退可能违反配准约束,导致配准错误。本文研究了宫颈核磁共振数据的自动分割和肿瘤检测。提出了一种基于层次自适应局部仿射配准的感兴趣器官边界识别方法。它将所有局部仿射分量在每一级的变换结合起来,形成一个整体的平滑变换。采用混合粒子群算法(HPSO)实现优化。与现有的刚性配准和非刚性配准算法相比,该方法具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信