Emotion Recognition in Real-world Conditions with Acoustic and Visual Features

M. Sidorov, W. Minker
{"title":"Emotion Recognition in Real-world Conditions with Acoustic and Visual Features","authors":"M. Sidorov, W. Minker","doi":"10.1145/2663204.2666279","DOIUrl":null,"url":null,"abstract":"There is an enormous number of potential applications of the system which is capable to recognize human emotions. Such opportunity can be useful in various applications, e.g., improvement of Spoken Dialogue Systems (SDSs) or monitoring agents in call-centers. Therefore, the Emotion Recognition In The Wild Challenge 2014 (EmotiW 2014) is focused on estimating emotions in real-world situations. This study presents the results of multimodal emotion recognition based on support vector classifier. The described approach results in 41.77% of overall classification accuracy in the multimodal case. The obtained result is more than 17% higher than the baseline result for multimodal approach.","PeriodicalId":389037,"journal":{"name":"Proceedings of the 16th International Conference on Multimodal Interaction","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2663204.2666279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

There is an enormous number of potential applications of the system which is capable to recognize human emotions. Such opportunity can be useful in various applications, e.g., improvement of Spoken Dialogue Systems (SDSs) or monitoring agents in call-centers. Therefore, the Emotion Recognition In The Wild Challenge 2014 (EmotiW 2014) is focused on estimating emotions in real-world situations. This study presents the results of multimodal emotion recognition based on support vector classifier. The described approach results in 41.77% of overall classification accuracy in the multimodal case. The obtained result is more than 17% higher than the baseline result for multimodal approach.
声音和视觉特征在真实世界条件下的情感识别
这个能够识别人类情感的系统有很多潜在的应用。这种机会在各种应用中都是有用的,例如,改进口语对话系统(SDSs)或监测呼叫中心的座席。因此,2014年野生挑战中的情绪识别(EmotiW 2014)专注于评估现实世界中的情绪。研究了基于支持向量分类器的多模态情感识别方法。所描述的方法在多模态情况下的总体分类准确率为41.77%。获得的结果比多模式方法的基线结果高出17%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信