Automatic recognition of audio event using dynamic local binary patterns

Chien-Yao Wang, Yu-Hao Chin, Tzu-Chiang Tai, D. Gunawan, Jia-Ching Wang
{"title":"Automatic recognition of audio event using dynamic local binary patterns","authors":"Chien-Yao Wang, Yu-Hao Chin, Tzu-Chiang Tai, D. Gunawan, Jia-Ching Wang","doi":"10.1109/ICCE-TW.2015.7216879","DOIUrl":null,"url":null,"abstract":"This work proposes an automatic recognition system for recognizing audio events. First, an audio signal is converted into a spectrogram by short time Fourier transform. The acoustic background noises in the spectrogram are reduced by box filtering. The contrast of the spectrogram is then enhanced by VAR operation. With the enhanced spectrogram, this work further proposes a novel dynamic local binary pattern (DLBP) feature based on human auditory system. Finally, the DLBP features are fed to multi-class support vector machines to achieve the audio event recognition. The experimental results on 16 classes of audio events demonstrate the performance of the proposed audio event recognition system.","PeriodicalId":340402,"journal":{"name":"2015 IEEE International Conference on Consumer Electronics - Taiwan","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2015.7216879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work proposes an automatic recognition system for recognizing audio events. First, an audio signal is converted into a spectrogram by short time Fourier transform. The acoustic background noises in the spectrogram are reduced by box filtering. The contrast of the spectrogram is then enhanced by VAR operation. With the enhanced spectrogram, this work further proposes a novel dynamic local binary pattern (DLBP) feature based on human auditory system. Finally, the DLBP features are fed to multi-class support vector machines to achieve the audio event recognition. The experimental results on 16 classes of audio events demonstrate the performance of the proposed audio event recognition system.
使用动态本地二进制模式的音频事件自动识别
本文提出了一种用于音频事件识别的自动识别系统。首先,通过短时傅里叶变换将音频信号转换成频谱图。采用盒滤波方法对谱图中的声背景噪声进行了抑制。然后通过VAR操作增强光谱图的对比度。在增强谱图的基础上,进一步提出了一种基于听觉系统的动态局部二元模式(DLBP)特征。最后,将DLBP特征输入到多类支持向量机中,实现音频事件识别。对16类音频事件的实验结果验证了所提音频事件识别系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信